Спектральный состав последовательности прямоугольных импульсов при различном периоде их скважности. Анализ спектра последовательности прямоугольных импульсов Как выглядит спектр периодической последовательности прямоугольных импульсов

функция sinc, как показано на рис. 2.6, достигает максимума (единицы) при у = 0и стремится к нулю при у ® ±¥, осциллируя с постепенно уменьшающейся амплитудой. Через нуль она проходит в точках у = ±1, ±2, …. На рис. 2.7, а как функция отношения п/Т 0 показан амплитудный спектр последовательности импульсов |с n |, а на рис. 2.7, б изображен фазовый спектр q n . Следует отметить, что положительные и отрицательные частоты двустороннего спектра - это полезный способ математического выражения спектра; очевидно, что в реальных условиях воспроизвести можно только положительные частоты.

Отношение

Идеальная периодическая последовательность импульсов включает все гармоники, кратные собственной частоте. В системах связи часто предполагается, что значительная часть мощности или энергии узкополосного сигнала приходится на частоты от нуля до первого нуля амплитудного спектра (рис. 2.7, а ). Таким образом, в качестве меры ширины полосы последовательности импульсов часто используется величина 1/T (где Т - длительность импульса). Отметим, что ширина полосы обратно пропорциональна длительности импульса; чем короче импульсы, тем более широкая полоса с ними связана. Отметим также, что расстояние между спектральными линиями Df = 1/Т 0 обратно пропорционально периоду импульсов; при увеличении периода линии располагаются ближе друг к другу.


Таблица 2.1. Фурье-образы

x (t ) X (f )
d(t )
d(f )
cos 2 pf 0 t /2
sin 2 pf 0 t /2
d(t - t 0)
d(f - f 0)
, a >0
exp(-at )u (t ), a >0
rect(t / T ) T sinc fT
W sinc Wt rect (f / W )

sinc x =


Таблица 2.2 Свойства преобразования Фурье f )

Свертка по частоте x 1 (t )x 2 (t ) X 1 (f )*X 2 (f )

Название образовательной организации:

Государственное бюджетное профессиональное образовательное учреждение «Ставропольский колледж связи имени Героя Советского Союза В.А. Петрова»

Год и место создания работы: 2016 год, цикловая комиссия естественных и общепрофессиональных дисциплин.

Методические указания к выполнению практической работы по дисциплине «Теория электросвязи»

«Расчет и построение спектра периодической последовательности прямоугольных импульсов»

для студентов 2 курса специальностей:

11.02.11 Сети связи и системы коммутации

11.02.09 Многоканальные телекоммуникационные системы

очной формы обучения

Цель работы: закрепить знания, полученные на теоретических занятиях, выработать навыки расчета спектра периодической последовательности прямоугольных импульсов.

Литература: П.А. Ушаков «Цепи и сигналы электросвязи». М.: Издательский центр «Академия», 2010, с.24-27.

1. Оснащение:

1.Персональный компьютер

2.Описание практической работы

2. Теоретический материал

2.1. Периодический сигнал произвольной формы может быть представлен в виде суммы гармонических колебаний с разными частотами, это называется спектральным разложение сигналом.

2.2 . Гармониками называются колебания, частоты которых в целое число раз больше частоты следования импульсов сигнала.

2.3. Мгновенное значение напряжения периодического сигнала производной формы может быть записано следующим образом:

Где постоянная составляющая, равная среднему значению сигнала за период;

Мгновенное значение синусоидального напряжения первой гармоники;

Частота гармоники, равная частоте следования импульсов;

Амплитуда первой гармоники;

Начальная фаза колебания первой гармоники;

Мгновенное значение синусоидального напряжения второй гармоники;

Частота второй гармоники;

Амплитуда второй гармоники;

Начальная фаза колебания второй гармоники;

Мгновенное значение синусоидального напряжения третий гармоники;

Частота третий гармоники;

Амплитуда третий гармоники;

Начальная фаза колебания третий гармоники;

2.4. Спектр сигнала - это совокупность гармонических составляющих с конкретными значениями частот, амплитуд и начальных фаз, образующих в сумме сигнала. На практике чаще всего используется диаграмма амплитуд

Если сигнал представлен собой периодическую последовательность прямоугольных импульсов, то постоянная составляющая равна

где Um - амплитуда напряжения ПППИ

s - скважность сигнала (S - T/t);

T - период следования импульсов;

t - длительность импульсов;

Амплитуды всех гармоник определяются выражением:

Umk = 2Um | sin kπ/s | / kπ

где k - номер гармоника;

2.5. Номера гармоника, амплитуды которых равны нулю

где n - любое целое число 1,2,3…..

Номер гармоники, амплитуда которой первый раз обращается в нуль, равен скважности ПППИ

2.6. Интервал между любыми соседними спектральными линиями равен частоте первой гармоники или частоте следования импульсов.

2.7 Огибающая амплитудного спектра сигнала (на рис. 1 показанная пунктирной линией)

выделяет группы спектральных линий называемых лепестками. Согласно рис. 1 каждый лепесток огибающей спектра содержит число линий, равное скважности сигнала.

3 . П орядок выполнения работы .

3.1. Получить вариант индивидуального задания, который соответствует номеру в списке журнала группы (см. приложение).

3.2. Ознакомиться с примером расчета (см. раздел 4)

4. Пример

4.1. Пусть период следования ПППИ Т=.1мкс, длительность импульсов t=0,25 мкс, амплитуда импульса =10В.

4.2. Расчет и построение временной диаграммы ПППИ.

4.2.1 . Для построения временной диаграммы ПППИ необходимо знать период следования импульсов Т, амплитуду и длительность импульсов t, которые известны из условия задачи.

4.2.2. Для построения временной диаграммы ПППИ необходимо выбрать масштабы по осям напряжений и времени. Масштабы должны соответствовать числам 1,2 и 4, умноженным на 10 n -(где n=0,1,2,3...). Ось времени должна занимать примерно 3/4 ширины листа и на ней следует разместить 2-3 периода сигнала. Вертикальная ось напряжений должна быть равна 5-10 см. При ширине листа 20 см длинна оси времени должна равна примерно 15 см. На 15-ти см удобно разместить 3 периода, при этом на каждый период будет приходиться L 1 =5см. Так как

Mt=T/Lt=1мкс/5см= 0,2 мкс/см

Полученный результат не противоречит выше указанным условиям. На оси напряжений удобно взять масштаб Мu=2В/см (см.рис.2).

4.3.Расчет и построение спектральной диаграммы.

4.3.1.Скважность ПППИ равна

4.3.2. Так как скважность S=4, то следует рассчитывать 3лепестка, т.к. 12 гармоник.

4.3.3.Частоты гармонических составляющих равны

Где к- номер гармоники, l- период ПППИ.

4.3.4. Амплитуды составляющих ПППИ равны

4.3.5. Математическая модель ПППИ напряжения

4.3.6.Выбор масштабов.

Ось частот располагается горизонтально и при ширине листа 20см должна иметь длину около 15 см. Так как на оси частот нужно показать самую высокую частоту 12 МГц удобно взять масштаб по этой оси Mf=1MГц/см.

Ось напряжений располагается вертикально и должна иметь длину 4-5 см. Так как из оси напряжений нужно показать самое большое напряжение

Удобно взять масштаб по этой оси M=1В/см.

4.3.7.Спектральная диаграмма показана на рис.3

Задание:

    T=0.75мс; τ=0.15мс 21.T=24мкс; τ=8мкс

    T=1.5 мкс; τ=0.25мкс 22. T=6.4мс; τ=1.6мс

    T=2.45мс; τ=0.35мс 23. T=7мс; τ=1.4мс

    T=13.5мкс; τ=4.5мкс 24. T=5.4мс; τ=0.9мс

    T=0.26мс; τ=0.65мкс 25. T=17.5мкс; τ=2.5мкс

    Т=0.9мс; τ=150мкс 26. T=1.4мкс; τ=0.35мкс

    Т=0.165мс; τ=55мкс 27. T=5.4мкс; τ=1.8мкс

    Т=0.3мс; τ=75мкс 28. T=2.1мс; τ=0.3мс

    Т=42.5мкс; τ=8.5мкс 29. T=3.5мс; τ=7мс

    Т=0.665мс; τ=95мкс 30. T=27мкс; τ=4.5мкс

    Т=12.5мкс; τ=2.5мкс 31. T=4.2мкс; τ=0.7мкс

    Т=38мкс; τ=9.5мкс 32.T=28мкс; τ=7мкс

    Т=0.9мкс; τ=0.3мкс 33. T=0.3мс; τ=60мкс

    Т=38.5мкс; τ=5.5мкс

    Т=0.21мc; τ=35мс

    Т=2.25мс; τ=0.45мс

    Т=39мкс; τ=6.5мкс

    Т=5.95мс; τ=0.85мс

    Т=48мкс; τ=16мкс

    СИГНАЛОВ

    Рассмотрим несколько примеров периодических колебаний, часто используемых в различных радиотехнических устройствах.

    1. ПРЯМОУГОЛЬНОЕ КОЛЕБАНИЕ (РИС. 2.3)

    Подобное колебание, часто называемое меандром, находит особенно широкое применение в измерительной технике.

    При выборе начала отсчета времени в соответствии с рис. 2.3, а функция является нечетной, а рис. 2.3, б - четной. Применяя формулы (2.24), находим для нечетной функции (рис. 2.3, а) при s(t)=e(t):

    Рис. 2.3. Периодическое колебание прямоугольной формы (меандр)

    Рис. 2.4. Коэффициенты комплексного (а) и тригонометрического (б) ряда Фурье колебания, показанного на рис. 2.3

    Учитывая, что , получаем

    Начальные фазы в соответствии с (2.27) равны для всех гармоник.

    Запишем ряд Фурье в тригонометрической форме

    Спектр коэффициентов комплексного ряда Фурье показан на рис. 2.4, а, а тригонометрического ряда - на рис. 2.4, б (при ).

    При отсчете времени от середины импульса (рис. 2.3, б) функция является четной относительно t и для нее

    Графики 1-й гармоник и их суммы изображены на рис. 2.5, а. На рис. 2.5, б эта сумма дополнена 5-й гармоникой, а на рис. 2.5, в - 7-й.

    С увеличением числа суммируемых гармоник сумма ряда приближается к функции всюду, кроме точек разрыва функции, где образуется выброс. При величина этого выброса равна , т. е. сумма ряда отличается от заданной функции на 18%. Этот дефект сходимости в математике получил название явления Гиббса.

    Рис. 2.5. Суммирование 1-й и 3-й гармоник (а), 1, 3 и 5-й гармоник (б), 1, 3, 5 и 7-й гармоник (в) колебания, показанного на рис. 2.3

    Рис. 2.6 Периодическое колебание пилообразной формы

    Рис. 2.7. Сумма первых пяти гармоник колебания, показанного на рис. 2.6

    Несмотря на то, что в рассматриваемом случае ряд Фурье не сходится к разлагаемой функции в точках ее разрыва, ряд сходится в среднем, поскольку при выбросы являются бесконечно узкими и не вносят никакого вклада в интеграл (2.13).

    2. ПИЛООБРАЗНОЕ КОЛЕБАНИЕ (РИС. 2.6)

    С подобными функциями часто приходится иметь дело в устройствах для развертки изображения в осциллографах. Так как эта функция является нечетной, ряд Фурье для нее содержит только синусоидальные члены. С помощью формул (2.24)-(2.31) нетрудно определить коэффициенты ряда Фурье. Опуская эти выкладки, напишем окончательное выражение для ряда

    Как видим, амплитуды гармоник убывают по закону , где . На рис. 2.7 показан график суммы первых пяти гармоник (в увеличенном масштабе).

    3. ПОСЛЕДОВАТЕЛЬНОСТЬ УНИПОЛЯРНЫХ ТРЕУГОЛЬНЫХ ИМПУЛЬСОВ (РИС. 2.8)

    Ряд Фурье для этой функции имеет следующий вид:

    Рис. 2.8. Сумма трех первых гармоник периодической функции

    Рис. 2.9. Периодическая последовательность прямоугольных импульсов с большой скважностью

    На рис. 2.8 изображена сумма первых трех членов этого ряда. В данном случае отметим более быстрое убывание амплитуд гармоник, чем в предыдущих примерах. Это объясняется отсутствием разрывов (скачков) в функции.

    4. ПОСЛЕДОВАТЕЛЬНОСТЬ УНИПОЛЯРНЫХ ПРЯМОУГОЛЬНЫХ ИМПУЛЬСОВ (РИС 2.9)

    Применяя формулу (2.32), находим среднее значение (постоянную составляющую)

    и коэффициент гармоники

    Рассмотрим периодическую последовательность импульсов прямоугольной формы с периодом Т, длительностью импульсов t u и максимальным значением . Найдем разложение в ряд такого сигнала, выбрав начало координат, как показано на рис. 15. При этом функция симметрична относительно оси ординат, т.е. все коэффициенты синусоидальных составляющих =0, и нужно рассчитать только коэффициенты .

    постоянная составляющая

    (2.28)

    Постоянная составляющая – это среднее значение за период, т.е. это площадь импульса , деленная на весь период, т.е. , т.е. то же, что получилось и при строгом формальном вычислении (2.28).

    Вспомним, что частота первой гармоники ¦ 1 = , где Т – период прямоугольного сигнала. Расстояние между гармониками D¦=¦ 1 . Если номер гармоники n окажется таким, что аргумент синуса , то амплитуда этой гармоники первый раз обращается в нуль. Это условие выполняется при . Номер гармоники, при котором амплитуда ее обращается в ноль первый раз, называют «первым нулем» и обозначают его буквой N, подчеркивая особые свойства этой гармоники:

    С другой стороны, скважность S импульсов – это отношение периода Т к длительности импульсов t u , т.е. . Следовательно «первый нуль» численно равен скважности импульса N=S . Поскольку синус обращается в ноль при всех значениях аргумента, кратных p, то и амплитуды всех гармоник с номерами, кратными номеру «первого нуля», тоже обращаются в ноль. То есть при , где k – любое целое число. Так, например, из (2.22) и (2.23) следует, что спектр прямоугольных импульсов со скважностью 2 состоит только из нечетных гармоник. Поскольку S=2 , то и N=2 , т.е. амплитуда второй гармоники первый раз обращается в ноль – это «первый нуль». Но тогда и амплитуды всех остальных гармоник с номерами, кратными 2, т.е. все четные тоже должны обращаться в ноль. При скважности S=3 нулевые амплитуды будут у 3, 6, 9, 12, ….гармоник.

    С увеличением скважности «первый нуль» смещается в область гармоник с большими номерами и, следовательно, скорость убывания амплитуд гармоник уменьшается. Простой расчет амплитуды первой гармоники при U m =100В для скважности S =2, U m 1 =63,7B, при S =5, U m 1 =37,4B и при S =10, U m 1 =19,7B, т.е. с ростом скважности амплитуда первой гармоники резко уменьшается. Если же найти отношение амплитуды, например, 5-й гармоники U m 5 к амплитуде первой гармоники U m 1 , то для S =2, U m 5 /U m 1 =0,2, а для S =10, U m 5 /U m 1 = 0,9, т.е. скорость затухания высших гармоник с ростом скважности уменьшается.

    Таким образом, с ростом скважности спектр последовательности прямоугольных импульсов становится более равномерным.

    Рассмотрим периодическую последовательность импульсов прямоугольной формы с периодом Т, длительностью импульсов и максимальным значением. Найдем разложение в ряд такого сигнала, выбрав начало координат как показано на рис. 15. при этом функция симметрична относительно оси ординат, т.е. все коэффициенты синусоидальных составляющих=0, и нужно рассчитать только коэффициенты.

    - 0 T t

    постоянная составляющая
    (28)

    Постоянная составляющая – это среднее значение за период, т.е. это площадь импульса
    , деленная на весь период, т.е.
    , т.е. то же, что получилось и при строгом формальном вычислении (28).

    Вспомним, что частота первой гармоники  1 =, где Т – период прямоугольного сигнала. Расстояние между гармониками= 1 . Если номер гармоники n окажется таким, что аргумент синуса
    , откуда. Номер гармоники, при котором амплитуда ее обращается в ноль первый раз, называют«первым нулем» и обозначают его буквой N, подчеркивая особые свойства этой гармоники:

    (29)

    с другой стороны, скважность S импульсов – это отношение периода Т к длительности импульсов t u , т.е. . Следовательно «первый нуль» численно равен скважности импульсаN = S . Поскольку синус обращается в ноль при всех значениях аргумента, кратных , то и амплитуды всех гармоник с номерами, кратными номеру «первого нуля», тоже обращаются в ноль. То есть
    при
    , гдеk – любое целое число. Так, например, из (22) и (23) следует, что спектр прямоугольных импульсов со скважностью 2 состоит только из нечетных гармоник. Поскольку S =2 , то и N =2 , т.е. амплитуда второй гармоники первый раз обращается в ноль – это «первый нуль». Но тогда и амплитуды всех остальных гармоник с номерами, кратными 2, т.е. все четные тоже должны обращаться в ноль. При скважности S=3 нулевые амплитуды будут у 3, 6, 9, 12, ….гармоник.

    С увеличением скважности «первый нуль» смещается в область гармоник с большими номерами и, следовательно, скорость убывания амплитуд гармоник уменьшается. Простой расчет амплитуды первой гармоники при U m =100В для скважности S =2, U m 1 =63,7B, при S =5, U m 1 =37,4B и при S =10, U m 1 =19,7B, т.е. с ростом скважности амплитуда первой гармоники резко уменьшается. Если же найти отношение амплитуды, например, 5-й гармоники U m 5 к амплитуде первой гармоники U m 1 , то для S =2, U m 5 /U m 1 =0,2, а для S =10, U m 5 / U m 1 = 0,9, т.е. скорость затухания высших гармоник с ростом скважности уменьшается.

    Таким образом, с ростом скважности спектр последовательности прямоугольных импульсов становится более равномерным.

    2.5. Спектры при уменьшении длительности импульса и периода сигнала.

    Регулировать скважность S = T / t n можно либо изменением длительности импульса t n при T =const, либо изменением периода Т при t n =const. Рассмотрим спектры сигналов при этом.

      T =const, t n =var. Частота первой гармоники f 1 =1/ T = const и f = f 1 = const. Первый нуль N = T / t n и по мере укорочения импульса t n смещается в область гармоник с большими номерами. При t n 0 N , спектр получается дискретным и f = f 1 , бесконечно широкий и с бесконечно малыми амплитудами гармоник.

      t n =const, T =var. Будем увеличивать период Т , тогда частота первой гармоники f 1 и расстояние между спектральными линиями f будут уменьшаться. Так как f = f 1 =1/Т , то спектральные линии будут смещаться в область более низких частот и «плотность» спектра возрастет. Если Т , то сигнал из периодического становится непериодическим (одиночный импульс). В этом случае f 1 = f 0, т.е. спектр из дискретного превращается в непрерывный, состоящий из бесконечно большого числа спектральных линий, находящихся на бесконечно малых расстояниях друг от друга.

    Отсюда следует правило: периодические сигналы порождают дискретные (линейчатые) спектры, а непериодические – сплошные (непрерывные).

    При переходе от дискретного спектра к непрерывному ряд Фурье заменяется интегралом Фурье. Наиболее просто эта замена выполняется, если использовать запись ряда Фурье в комплексной форме (16) и (17). Интеграл Фурье для непрерывного спектра записывается

    , (30)

    где
    (31)

    Функция F (j ) называется спектральной функцией или спектральной плотностью , которая зависит от частоты. Формулы (30) и (31) называют в совокупности односторонним преобразованием Фурье , которое является частным случаем более общего преобразования Лапласа и получается заменой в преобразовании Лапласа комплексной переменной р на j .

    Спектральную функцию можно представить как огибающую коэффициентов ряда Фурье, т.е. как предел линейчатого спектра периодической функции при Т . Функция F (j ) может быть действительной или комплексной. Считая в общем случае
    , мы получаем две частотные характеристики:
    -амплитудный спектр , т.е. зависимость амплитуды спектральных составляющих от частоты, и () фазовый спектр , т.е. закон изменения фазы спектральных составляющих сигнала от частоты. Можно показать, что амплитудный спектр – всегда четная, а фазовый спектр – всегда нечетная функция . Спектральную функцию для многих непериодических сигналов (одиночных импульсов различной формы) наиболее легко и просто находить с помощью таблиц оригиналов и изображений в преобразовании Лапласа, которые приводятся в учебной и справочной литературе. После нахождения изображения по Лапласу F (p ) для заданной непериодической функции f (t ) , спектральная функция находится

    (32)

    Итак, согласно (30) непериодическая функция f (t ) представляется совокупностью бесконечно большого числа гармоник с бесконечно малыми амплитудами
    во всем диапазоне частот от - до +, т.е. представление f (t ) в виде интеграла Фурье подразумевает суммирование незатухающих гармонических колебаний бесконечного сплошного спектра частот.

      описание лабораторной установки

    Работа выполняется на блоке «Синтезатор сигнала», функциональная схема которого приведена на рис. 16.

    Блок содержит генераторов Г1-Г6 шести первых гармоник сигнала. Частота первой гармоники равна 10 кГц. Гармонический сигнал с выхода n-го генератора через фазовращатель Ф n и аттенюатор А n поступает на сумматор. Фазовращателями задают начальные фазы  n гармоник, а аттенюаторами – их амплитуды А n .

    На выходе сумматора в общем случае получается сумма шести гармоник сигнала

    .

    С выхода сумматора сигнал подается на вход Y осциллографа. Для его внешней синхронизации используется специальный импульсный сигнал, подаваемый с гнезда «Синхр.» на вход Х осциллографа. Для установки и контроля амплитуд гармоник предусмотрена возможность отключения любой из гармоник. Включив только генератор n-ой гармоники, можно установить ее амплитуду аттенюатором А n и оценить ее значения с помощью осциллографа. Каждый фазовращатель с помощью переключателя позволяет установить требуемое дискретное значение начальной фазы гармоники, либо отключить генератор.