Метод монте карло на простейших примерах. Метод монте карло. Постановка задачи для нахождения числа Пи методом Монте-Карло

Различные методы и приборы для определения параметров и характеристик случайных процессов можно объединить в две группы. Первую группу составляют приборы для определения корреляционных функций (корреляторы), спектральных плотностей (спектрометры), математических ожиданий, дисперсий, законов распределения и прочих случайных процессов и величин.

Все приборы первой группы можно разделить на две подгруппы. Одни определяют характеристики записанных случайных сигналов за достаточно большое время, намного превышающее время реализации самого случайного процесса. Другие (они в последнее время вызывают наибольший интерес) позволяют получать характеристики случайного процесса оперативно, в такт с поступлением информации при натурных испытаниях новых систем управления, так как, пользуясь их показаниями, можно непосредственно изменять процесс управления и в ходе эксперимента наблюдать за результатами этих изменений.

Вторая группа содержит методы и приборы, предназначенные для исследования случайных процессов и главным образом систем управления, в которых присутствуют случайные сигналы, на универсальных цифровых и аналоговых вычислительных машинах. Иногда для таких исследований приходится создавать специализированные вычислительные машины цифрового, аналогового или чаще всего аналого-цифрового (гибридного) типа, так как существующие типовые машины не приспособлены для решения некоторых задач.

Широко применяется на практике метод Монте-Карло (метод статических испытаний). Его основная идея чрезвычайно проста и заключается по существу в математическом моделировании на вычислительной машине тех случайных процессов и преобразований с ними, которые имеют место в реальной системе управления. Этот метод в основном реализуется на цифровых и, реже, на аналоговых вычислительных машинах.

Можно утверждать, что метод Монте-Карло остаётся чистым методом моделирования случайных процессов, чистым математическим экспериментом, в известном смысле лишённым ограничений, свойственным другим методам. Рассмотрим данный метод применительно к решению различных задач управления.

Общая характеристика метода Монте-Карло

Как уже указывалось, идея метода Монте-Карло (или метода статистического моделирования) очень проста и заключается в том, что в вычислительной машине создаётся процесс преобразования цифровых данных, аналогичный реальному процессу. Вероятностные характеристики обоих процессов (реального и смоделированного) совпадают с какой-то точностью.

Допустим, необходимо вычислить математическое ожидание случайной величины X, подчиняющейся некоторому закону распределения F(x). Для этого в машине реализуют датчик случайных чисел, имеющий данное распределение F(x), и по формуле, которую легко запрограммировать, определяют оценку математического ожидания:

Каждое значение случайной величины x i представляется в машине двоичным числом, которое поступает с выхода датчика случайных чисел на сумматор. Для статистического моделирования рассматриваемой задачи требуется N-кратное повторение решения.

Рассмотрим ещё один пример. Производится десять независимых выстрелов по мишени. Вероятность попадания при одном выстреле задана и равна p. Требуется определить вероятность того, что число попаданий будет чётным, т.е. 0, 2, 4, 6, 8, 10. Вероятность того, что число попаданий будет 2k, равна:

откуда искомая вероятность

Если эта формула известна, то можно осуществить физический эксперимент, произведя несколько партий выстрелов (по десять в каждой) по реальной мишени. Но проще выполнить математический эксперимент на вычислительной машине следующим образом. Датчик случайных чисел выдаст в цифровом виде значение случайной величины?, подчиняющейся равномерному закону распределения в интервале . Вероятность неравенства?

Для пояснения целесообразно обратиться к рис. 1, на котором весь набор случайных чисел представляется в виде точек отрезка . Вероятность попадания случайной величины?, имеющей равномерное распределение в интервале , в интервал (где) равна длине этого отрезка, т.е. p. Поэтому на каждом такте моделирования полученное число? сравнивают с заданной вероятностью p. Если?

Различают две области применения метода Монте-Карло. Во-первых, для исследования на вычислительных машинах таких случайных явлений и процессов, как прохождение элементарных ядерных частиц (нейтронов, протонов и пр.) через вещество, системы массового обслуживания (телефонная сеть, система парикмахерских, система ПВО и пр.), надёжность сложных систем, в которых выход из строя элементов и устранения неисправностей являются случайными процессами, статистическое распознавание образов. Это - применение статистического моделирования к изучению так называемых вероятностных систем управления.

Этот метод широко применяется и для исследования дискретных систем управления, когда используются кибернетические модели в виде вероятностного графа (например, сетевое планирование с?-распределением времени выполнением работ) или вероятностного автомата.

Если динамика системы управления описывается дифференциальными или разностными уравнениями (случай детерминированных систем управления) и на систему, например угловую следящую систему радиолокационной станции воздействуют случайные сигналы, то статическое моделирование также позволяет получить необходимые точностные характеристики. В данном случае с успехом применяются как аналоговые, так и цифровые вычислительные машины. Однако, учитывая более широкое применение при статистическом моделировании цифровых машин, рассмотрим в данном разделе вопросы, связанные только с этим типом машин.

Вторая область применения метода Монте-Карло охватывает чисто детерминированные, закономерные задачи, например нахождение значений определённых одномерных и многомерных интегралов. Особенно проявляется преимущество этого метода по сравнению с другими численными методами в случае кратных интегралов.

При решении алгебраических уравнений методом Монте-Карло число операций пропорционально числу уравнений, а при их решении детерминированными численными методами это число пропорционально кубу числа уравнений. Такое же приблизительно преимущество сохраняется вообще при выполнении различных вычислений с матрицами и особенно в операции обращения матрицы. Надо заметить, что универсальные вычислительные машины не приспособлены для матричных вычислений и метод Монте-Карло, применённый на этих машинах, лишь несколько улучшает процесс решения, но особенно преимущества вероятностного счёта проявляются при использовании специализированных вероятностных машин. Основной идеей, которая используется при решении детерминированных задач методом Монте-Карло, является замена детерминированной задачи эквивалентной статистической задачей, к которой можно применять этот метод. Естественно, что при такой замене вместо точного решения задачи получается приближённое решение, погрешность которого уменьшается с увеличением числа испытаний.

Эта идея используется в задачах дискретной оптимизации, которые возникают при управлении. Часто эти задачи сводятся к перебору большого числа вариантов, исчисляемого комбинаторными числами вида N=. Так, задача распределения n видов ресурсов между отраслями для n>3 не может быть точно решена на существующих цифровых вычислительных машинах (ЦВМ) и ЦВМ ближайшего будущего из-за большого объёма перебора вариантов. Однако таких задач возникает очень много в кибернетике, например синтез конечных автоматов. Если искусственно ввести вероятностную модель-аналог, то задача существенно упростится, правда, решение будет приближённым, но его можно получить с помощью современных вычислительных машин за приемлемое время счёта.

При обработке больших массивов информации и управлении сверхбольшими системами, которые насчитывают свыше 100 тыс. компонентов (например, видов работ, промышленных изделий и пр.), встаёт задача укрупнения или эталонизации, т.е. сведения сверхбольшого массива к 100-1000 раз меньшему массиву эталонов. Это можно выполнить с помощью вероятностной модели. Считается, что каждый эталон может реализоваться или материализоваться в виде конкретного представителя случайным образом с законом вероятности, определяемым относительной частотой появления этого представителя. Вместо исходной детерминированной системы вводится эквивалентная вероятностная модель, которая легче поддаётся расчёту. Можно построить несколько уровней, строя эталоны эталонов. Во всех этих вероятностных моделях с успехом применяется метод Монте-Карло. Очевидно, что успех и точность статистического моделирования зависит в основном от качества последовательности случайных чисел и выбора оптимального алгоритма моделирования.

Задача получения случайных чисел обычно разбивается на две. Вначале получают последовательность случайных чисел, имеющих равномерное распределение в интервале . Затем из неё получают последовательность случайных чисел, имеющих произвольный закон распределения. Один из способов такого преобразования состоит в использовании нелинейных преобразований. Пусть имеется случайная величина X, функция распределения вероятности для которой

Если y является функцией x, т.е. y=F(x), то и поэтому. Таким образом, для получения последовательности случайных чисел, имеющих заданную функцию распределения F(x), необходимо каждое число y с выхода датчика случайных чисел, который формирует числа с равномерным законом распределения в интервале , подать на нелинейное устройство (аналоговое или цифровое), в котором реализуется функция, обратная F(x), т.е.

Полученная таким способом случайная величина X будет иметь функцию распределения F(x). Рассмотренная выше процедура может быть использована для графического способа получения случайных чисел, имеющих заданный закон распределения. Для этого на миллиметровой бумаге строится функция F(x) и вводится в рассмотрение другая случайная величина Y, которая связана со случайной величиной X соотношением (2) (рис. 2).

Так как любая функция распределения монотонно неубывающая, то

Отсюда следует, что величина Y имеет равномерный закон распределения в интервале , т. к. её функция распределения равна самой величине

Плотность распределения вероятности для Y

Для получения значения X берётся число из таблиц случайных чисел, имеющих равномерное распределение, которое откладывается на оси ординат (рис. 2), и на оси абсцисс считывается соответствующее число X. Повторив неоднократно эту процедуру, получим набор случайных чисел, имеющих закон распределения F(x). Таким образом, основная проблема заключается в получении равномерно распределённых в интервале случайных чисел. Один из методов, который используется при физическом способе получения случайных чисел для ЭВМ, состоит в формировании дискретной случайной величины, которая может принимать только два значения: 0 или 1 с вероятностями

Можно доказать, что случайная величина? * , заключённая в интервале , имеет равномерный закон распределения

В цифровой вычислительной машине имеется конечное число разрядов k. Поэтому максимальное количество несовпадающих между собой чисел равно 2 k . В связи с этим в машине можно реализовать дискретную совокупность случайных чисел, т.е. конечное множество чисел, имеющих равномерный закон распределения. Такое распределение называется квазиравномерным. Возможные значения реализации дискретного псевдослучайного числа в вычислительной машине с k разрядами будут иметь вид:

Вероятность каждого значения (3) равна 2 -k . Эти значения можно получить следующим образом

Случайная величина имеет математическое ожидание

Учитывая, что

и выражение для конечной суммы геометрической прогрессии

получаем:

Аналогично можно определить дисперсию величины:

или, используя формулу (4), получаем:

Согласно формуле (5) оценка величины?* получается смещённой при конечном k. Это смещение особенно сказывается при малом k. Поэтому вместо вводят оценку

Очевидно, что случайная величина? в соответствии с соотношением (3) может принимать значения

I=0,1,2,…, 2 k -1

с вероятностью p=1/2 k .

Математическое ожидание и дисперсию величины? можно получить из соотношений (5) и (6), если учесть (7). Действительно,

Отсюда получаем выражение для среднеквадратичного значения в виде

Напомним, что для равномерно распределённой в интервале величины x имеем

Из формулы (8) следует, что при среднеквадратичное отклонение? квазиравномерной совокупности стремится к. Ниже приведены значения отношения среднеквадратичных значений двух величин? и? в зависимости от числа разрядов, причём величина? имеет равномерное распределение в интервале (табл. 1).

Таблица 1

Из табл. 1 видно, что при k>10 различие в дисперсиях несущественно.

На основании вышеизложенного задача получения совокупности квазиравномерных чисел сводится к получению последовательности независимых случайных величин z i (i=1,2,…, k), каждая из которых принимает значение 0 или 1 с вероятностью 1/2. Различают два способа получения совокупности этих величин: физический способ генерирования и алгоритмическое получение так называемых псевдослучайных чисел. В первом случае требуется специальная электронная приставка к цифровой вычислительной машине, во втором случае загружаются блоки машины.

При физическом генерировании чаще всего используются радиоактивные источники или шумящие электронные устройства. В первом случае радиоактивные частицы, излучаемые источником, поступают на счётчик частиц. Если показание счётчика чётное, то z i =1, если нечётное, то z i =0. Определим вероятность того, что z i =1. Число частиц k, которое испускается за время?t, подчиняются закону Пуассона:

Вероятность чётного числа частиц

Таким образом, при больших??t вероятность P{Z i =1} близка к 1/2.

Второй способ получения случайных чисел z i более удобен и связан с собственными шумами электронных ламп. При усилении этих шумов получается напряжение u(t), которое является случайным процессом. Если брать его значения, достаточно отстоящие друг от друга, так чтобы они были некоррелированы, то величины u(t i) образуют последовательность независимых случайных величин. Обычно выбирают уровень отсечки a и полагают

причём уровень a следует выбрать так, чтобы

Также применяется более сложная логика образования чисел z i . В первом варианте используют два соседних значения u(t i) и u(t i+1), и величина Z i строится по такому правилу:

Если пара u(t i) - a и u(t i+1) - a одного знака, то берётся следующая пара. Требуется определить вероятность при заданной логике. Будем считать, что P {u(t i)>a}=W и постоянная для всех t i . Тогда вероятность события равна по формуле событий A 1 H v . Здесь H v - это вероятность того, что v раз появилась пара одинакового знака

u(t i) - a; u(t i+1) - a. (9)

Поэтому вероятность события A 1 H v

P{A 1 H v }=W (1-W) v .

Это - вероятность того, что после v пар вида (9) появилось событие A 1 . Оно может появиться сразу с вероятностью W (1-W), оно может появиться и после одной пары вида (9) с вероятностью

W (1-W)

и т.д. В результате

Отсюда следует, что если W=const, то логика обеспечивает хорошую последовательность случайных чисел. Второй способ формирования чисел zi состоит в следующем:

W=P {u(t i)>a}=1/2+?.

P{Z i =1}=2W (1-W)=1/2-2? 2 .

Чем меньше?, тем ближе вероятность P{Z i =1} к величине 1/2.

Для получения случайных чисел алгоритмическим путём с помощью специальных программ на вычислительной машине разработано большое количество методов. Так как на ЦВМ невозможно получить идеальную последовательность случайных чисел хотя бы потому, что на ней можно набрать конечное множество чисел, такие последовательности называются псевдослучайными. На самом деле повторяемость или периодичность в последовательности псевдослучайных чисел наступает значительно раньше и обусловливается спецификой алгоритма получения случайных чисел. Точные аналитические методы определения периодичности, как правило, отсутствуют, и величина периода последовательности псевдослучайных чисел определяется экспериментально на ЦВМ. Большинство алгоритмов получается эвристически и уточняется в процессе экспериментальной проверки. Рассмотрение начнём с так называемого метода усечений. Пусть задана произвольная случайная величина u, изменяющаяся в интервале , т.е. . Образуем из неё другую случайную величину

u n =u , (10)

где u используется для определения операции получения остатка от деления числа u на 2 -n . Можно доказать, что величины u n в пределе при имеют равномерное распределение в интервале .

По существу с помощью формулы (10) осуществляется усечение исходного числа со стороны старших разрядов. При оставлении далёких младших разрядов естественно исключается закономерность в числах и они более приближаются к случайным. Рассмотрим это на примере.

Пример 1. Пусть u = 0,10011101… = 1?1/2 + 0?1/2 2 + 0?1/2 3 + 1?1/2 4 + 1?1/2 5 + 1?1/2 6 + 0?1/2 7 + 1?1/2 8 + …

Выберем для простоты n=4. Тогда {u mod 2 -4 } = 0,1101…

Из рассмотренного свойства ясно, что существует большое количество алгоритмов получения псевдослучайных чисел. При этом после операции усечения со стороны младших разрядов применяется стандартная процедура нормализации числа в цифровой вычислительной машине. Так, если усечённое слева число не умещается по длине в машине, то производится усечение числа справа.

При проверке качества псевдослучайных чисел прежде всего интересуются длиной отрезка апериодичности и длиной периода (рис. 3). Под длиной отрезка апериодичности L понимается совокупность последовательно полученных случайных чисел? 1 , …, ? L таких, что? i ? j при, но? L+1 равно одному из? k ().

Под длиной периода последовательности псевдослучайных чисел понимается T=L-i+1. Начиная с некоторого номера i числа будут периодически повторяться с этим периодом (рис. 3).


Как правило, эти два параметра (длины апериодичности и периода) определяются экспериментально. Качество совпадения закона распределения случайных чисел с равномерным законом проверяется с помощью критериев согласия.

Точность метода Монте-Карло

Метод Монте-Карло применяется там, где не требуется высокой точности. Например, если определяют вероятность поражения мишени при стрельбе, то разница между p 1 =0,8 и p 2 =0,805 несущественна. Обычно считается, что метод Монте-Карло позволяет получить точность примерно 0,01-0,05 максимального значения определяемой величины.

Получим некоторые рабочие формулы. Определим по методу Монте-Карло вероятность пребывания системы в некотором состоянии. Эта вероятность оценивается отношением

где M - число пребываний системы в этом состоянии в результате N моделирований. Учитывая выражение для дисперсии величины M/N

и неравенство Чебышёва

Величина

есть ни что иное, как ошибка моделирования по методу Монте-Карло. С помощью формулы (11) можно написать следующую формулу для величины (12):

где p 0 - вероятность невыполнения этой оценки. С помощью частоты M/N может быть получена оценка математического ожидания m x некоторой случайной величины X. Ошибка этой оценки

находится с помощью соотношения

Отсюда видно, что ошибка моделирования находится в квадратичной зависимости от числа реализаций, т.е.

Пример 2. Допустим, что определяется математическое ожидание ошибки x поражения мишени. Процесс стрельбы и поражения моделируется на ЦВМ по методу Монте-Карло. Требуется точность моделирования? = 0,1 м с вероятностью p = 1-p 0 = 0,9 при заданной дисперсии? x = 1 м. Необходимо определить количество моделирований N. По формуле (13) получаем:

При таком количестве реализаций обеспечивается?=0,1 м с вероятностью p=0,9.

Математические предпосылки создания имитационной модели

Модели и их роль в изучении процессов функционирования сложных систем

В узком смысле под моделью понимается образ, описание, представление, изображение какого-либо объекта или системы объектов (оригинала), используемое при определенных условиях в качестве заменителя его или представителя. Модель является представителем объекта, системы или понятия (идеи) в некоторой форме, отличной от формы их реального существования. Модель служит обычно средством, помогающим нам в объяснении, понимании или совершенствовании системы. Модель какого-либо объекта может быть или точной копией этого объекта (хотя и выполненной из другого материала и в другом масштабе), или отображать некоторые характерные свойства объекта в абстрактной форме.

Изучение объектов познания с помощью моделей является процессом моделирования.

Особенности целенаправленной переработки информации и повышения уровня организации в современных условиях научно-технической революции обусловили становление и развитие моделей нового типа, которые охватывают не только важнейшие параметры объекта исследования, но, и включают главные моменты деятельности исследователя. К этой группе моделей относятся: имитационные, ситуационные, эволюционные, модели катастроф, отражающие особый тип изменений.

Статистические испытания по методу Монте-Карло представляют собой простейшее имитационное моделирование при полном отсутствии каких-либо правил поведения. Получение выборок по методу Монте-Карло - основной принцип компьютерного моделирования систем, содержащих стохастические или вероятностные элементы. Зарождение метода связано с работой фон Неймана и Улана в конце 1940-х гг., когда они ввели для-него название..«Монте-Карло» и применили его к решению некоторых задач экранирования ядерных излучений. Этот математический метод был известен и ранее, но свое второе рождение нашел в Лос-Аламосе в закрытых работах по ядерной технике, которые велись под кодовым обозначением «Монте-Карло». Применение метода оказалось настолько успешным, что он получил распространение и в других областях, в частности в экономике.

Однако, имитационное моделирование - это более широкое понятие, и метод Монте-Карло является важным, но далеко не единственным методическим компонентом имитационного моделирования.

Метод Монте-Карло основан на статистических испытаниях и по природе своей является экстремальным, может применяться для решения полностью детерминированных задач, таких, как обращение матриц, решение дифференциальных уравнений в частных производных, отыскание экстремумов и численное интегрирование. При вычислениях методом Монте-Карло статистические результаты получаются путем повторяющихся испытаний. Вероятность того, что эти результаты отличаются от истинных не более чем на заданную величину, есть функция количества испытаний.



В основе вычислений по методу Монте-Карло лежит случайный выбор чисел из заданного вероятностного распределения. При практических вычислениях эти числа берут из таблиц или получают путем некоторых операций, результатами которых являются псевдослучайные числа с теми же свойствами, что и числа, получаемые путем случайной выборки. Имеется большое число вычислительных алгоритмов, которые позволяют получить длинные последовательности псевдослучайных чисел.

Метод заключается в следующем: если r i = 0,0040353607, то r i+1 = {40353607r i }}mod 1, где mod 1 означает операцию извлечения из результата только дробной части после десятичной точки. Как описано в различных литературных источниках, числа r i начинают повторяться после цикла из 50 миллионов чисел, так что r 50000001 = r 1 , Последовательность r i получается равномерно распределенной на интервале (0,1). Ниже будут рассмотрены более точные способы получения таких чисел со значительно большими периодами, а также пояснения, как в реальных моделях такие числа становятся практически случайными.

Применение метода Монте-Карло может дать существенный эффект при моделировании развития процессов, натурное наблюдение которых нежелательно или невозможно, а другие математические методы применительно к этим процессам либо не разработаны, либо неприемлемы из-за многочисленных оговорок и допущений, которые могут привести к серьезным погрешностям или неправильным выводам. В связи с этим необходимо не только наблюдать развитие процесса в нежелательных направлениях, но и оценивать гипотезы о параметрах нежелательных ситуаций, к которым приведет такое развитие, в том числе и параметрах рисков.

— необъемлемая часть любого решения, которое мы принимаем. Мы постоянно сталкиваемся с неопределенностью, неоднозначностью и изменчивостью. И даже несмотря на беспрецедентно широкий доступ к информации, мы не можем точно предсказать будущее. Моделирование по методу Монте-Карло (также известное как метод Монте-Карло) позволяет рассмотреть все возможные последствия ваших решений и оценить воздействие риска, что обеспечивает более высокую эффективность принятия решений в условиях неопределенности.

Что такое моделирование по методу Монте-Карло?
Моделирование по методу Монте-Карло представляет собой автоматизированную математическую методику, предназначенную для учета риска в процессе количественного анализа и принятия решений. Эта методика применяется профессионалами в разных областях, таких как финансы, управление проектами, энергетика, производство, проектирование, НИОКР, страхование, нефтегазовая отрасль, транспорт и охрана окружающей среды.

Каждый раз в процессе выбора направления дальнейших действий моделирование по методу Монте-Карло позволяет специалисту, принимающему решения, рассматривать целый спектр возможных последствий и оценивать вероятность их наступления. Этот метод демонстрирует возможности, лежащие на противоположных концах спектра (результаты игры ва-банк и принятия наиболее консервативных мер), а также вероятные последствия умеренных решений.

Впервые этим методом воспользовалась ученые, занимавшиеся разработкой атомной бомбы; его назвали в честь Монте-Карло - курорта в Монако, известного своими казино. Получив распространение в годы Второй мировой войны, метод Монте-Карло стал применяться для моделирования всевозможных физических и теоретических систем.

Посмотреть отзывы
Даглас Хаббард
Hubbard Decision Research
Время : 00:35 сек

«Моделирование по методу Монте-Карло — единственный способ выполнить анализ ответственных решений в условиях неопределенности»

Джон Чжао
Suncor Energy
Время : 02:36 мин

«Проведение моделирования по методу Монте-Карло при оценке капитальных затрат стало [в Suncor] обязательным требованием для любых крупных проектов»

Как выполняется моделирование по методу Монте-Карло
В рамках метода Монте-Карло анализ риска выполняется с помощью моделей возможных результатов. При создании таких моделей любой фактор, которому свойственна неопределенность, заменяется диапазоном значений - распределением вероятностей. Затем выполняются многократные расчеты результатов, причем каждый раз используется другой набор случайных значений функций вероятности. Порой для завершения моделирования бывает необходимо произвести тысячи и даже десятки тысяч перерасчетов - в зависимости от количества неопределенностей и установленных для них диапазонов. Моделирование по методу Монте-Карло позволяет получить распределения значений возможных последствий.

При использовании распределений вероятностей переменные могут иметь разные вероятности наступления разных последствий. Распределения вероятностей представляют собой гораздо более реалистичный способ описания неопределенности переменных в процессе анализа риска. Ниже перечислены наиболее распространенные распределения вероятностей.

Нормальное распределение (или « гауссова кривая »). Чтобы описать отклонение от среднего, пользователь определяет среднее или ожидаемое значение и стандартное отклонение. Значения, расположенные посредине, рядом со средним, характеризуются наиболее высокой вероятностью. Нормальное распределение симметрично и описывает множество обычных явлений - например, рост людей. К примерам переменных, которые описываются нормальными распределениями, относятся темпы инфляции и цены на энергоносители.

Логнормальное распределение. Значения имеют положительную асимметрию и в отличие от нормального распределения несимметричны. Такое распределение используется для отражения величин, которые не опускаются ниже нуля, но могут принимать неограниченные положительные значения. Примеры переменных, описываемых логнормальными распределениями, включают стоимость недвижимого имущества, цены на акции и нефтяные запасы.

Равномерное распределение. Все величины могут с равной вероятностью принимать то или иное значение, пользователь просто определяет минимум и максимум. К примерам переменных, которые могут иметь равномерное распределение, относятся производственные издержки или доходы от будущих продаж нового продукта.

Треугольное распределение. Пользователь определяет минимальное, наиболее вероятное и максимальное значения. Наибольшую вероятность имеют значения, расположенные возле точки максимальной вероятности. В число переменных, которые могут быть описаны треугольным распределением, входят продажи за минувший период в единицу времени и уровни запасов материальных оборотных средств.

PERT-распределение. Пользователь определяет минимальное, наиболее вероятное и максимальное значения — так же, как при треугольном распределении. Наибольшую вероятность имеют значения, расположенные возле точки максимальной вероятности. Однако величины в диапазоне между наиболее вероятным и предельными значениями проявляются с большей вероятностью, чем при треугольном распределении, то есть отсутствует акцент на предельных значениях. Пример использования PERT-распределения — описание продолжительности выполнения задачи в рамках модели управления проектом.

Дискретное распределение. Пользователь определяет конкретные значения из числа возможных, а также вероятность получения каждого из них. Примером может служить результат судебного процесса: 20% вероятность положительного решения, 30% вероятность отрицательного решения, 40% вероятность соглашения сторон и 10% вероятность аннулирования судебного процесса.

При моделировании по методу Монте-Карло значения выбираются случайным образом из исходных распределений вероятности. Каждая выборка значений называется итерацией; полученный из выборки результат фиксируется. В процессе моделирования такая процедура выполняется сотни или тысячи раз, а итогом становится распределение вероятностей возможных последствий. Таким образом, моделирование по методу Монте-Карло дает гораздо более полное представление о возможных событиях. Оно позволяет судить не только о том, что может произойти, но и о том, какова вероятность такого исхода.

Моделирование по методу Монте-Карло имеет ряд преимуществ по сравнению с детерминистским анализом, или анализом « по точечным оценкам»:

  • Вероятностные результаты. Результаты демонстрируют не только возможные события, но и вероятность их наступления.
  • Графическое представление результатов. Характер данных, получаемых при использовании метода Монте-Карло, позволяет создавать графики различных последствий, а также вероятностей их наступления. Это важно при передаче результатов другим заинтересованным лицам.
  • Анализ чувствительности. За редким исключением детерминистский анализ затрудняет определение того, какая из переменных в наибольшей степени влияет на результаты. При проведении моделирования по методу Монте-Карло несложно увидеть, какие исходные данные оказывают наибольшее воздействие на конечные результаты.
  • Анализ сценариев. В детерминистских моделях очень сложно моделировать различные сочетания величин для различных исходных значений, и, следовательно, оценить воздействие по-настоящему отличающихся сценариев. Применяя метод Монте-Карло, аналитики могут точно определить, какие исходные данные приводят к тем или иным значениям, и проследить наступление определенных последствий. Это очень важно для проведения дальнейшего анализа.
  • Корреляция исходных данных. Метод Монте-Карло позволяет моделировать взаимозависимые отношения между исходными переменными. Для получения достоверных сведений необходимо представлять себе, в каких случаях при увеличении некоторых факторов соответствующим образом возрастают или снижаются другие.

Вы также можете улучшить результаты моделирования по методу Монте-Карло путем проведения выборки с применением метода « латинский гиперкуб», в рамках которого отбор производится с большей точностью из всего интервала функций распределения.

Продукты Palisade для моделирования
по методу Монте-Карло
Появление приложений, предназначенных для работы с электронными таблицами на персональных компьютерах, открыло перед специалистами широкие возможности для использования метода Монте-Карло при проведении анализа в повседневной деятельности. Microsoft Excel относится к числу наиболее распространенных аналитических инструментов для электронных таблиц, а программа представляет собой основной плагин Palisade для Excel, позволяющий выполнять моделирование по методу Монте-Карло. Впервые программа @RISK была представлена для Lotus 1-2-3 на базе операционной системы DOS в 1987 году и благодаря точности расчетов, гибкости моделирования и простоте использования сразу же заслужила превосходную репутацию. Появление Microsoft Project привело к созданию другого логического приложения для применения метода Монте-Карло. Его основная задача заключалась в анализе неопределенностей и рисков, связанных с управлением крупными проектами.

Не так давно я прочитал замечательную книгу Дугласа Хаббарда . В кратком конспекте книги я обещал, что одному из разделов – Оценка риска: введение в моделирование методом Монте-Карло – я посвящу отдельную заметку. Да всё как-то не складывалось. И вот недавно я стал более внимательно изучать методы управления валютными рисками. В материалах, посвященных этой тематике, часто упоминается моделирование методом Монте-Карло. Так что обещанный материал перед вами.

Приведу простой пример моделирования методом Монте-Карло для тех, кто никогда не работал с ним ранее, но имеет определенное представление об использовании электронных таблиц Excel.

Предположим, что вы хотите арендовать новый станок. Стоимость годовой аренды станка 400 000 дол., и договор нужно подписать на несколько лет. Поэтому, даже не достигнув , вы всё равно не сможете сразу вернуть станок. Вы собираетесь подписать договор, думая, что современное оборудование позволит сэкономить на трудозатратах и стоимости сырья и материалов, а также считаете, что материально-техническое обслуживание нового станка обойдется дешевле.

Скачать заметку в формате , примеры в формате

Ваши калиброванные специалисты по оценке дали следующие интервалы значений ожидаемой экономии и годового объема производства:

Годовая экономия составит: (MS + LS + RMS) х PL

Конечно, этот пример слишком прост, чтобы быть реалистичным. Объем производства каждый год меняется, какие-то затраты снизятся, когда рабочие окончательно освоят новый станок, и т.д. Но мы в этом примере намеренно пожертвовали реализмом ради простоты.

Если мы возьмем медиану (среднее) каждого из интервалов значений, то получим годовую экономию: (15 + 3 + 6) х 25 000 = 600 000 (дол.)

Похоже, что мы не только добились безубыточности, но и получили кое-какую прибыль, но не забывайте – существуют неопределенности. Как же оценить рискованность этих инвестиций? Давайте, прежде всего, определим, что такое риск в данном контексте. Чтобы получить риск, мы должны наметить будущие результаты с присущими им неопределенностями, причем какие-то из них – с вероятностью понести ущерб, поддающийся количественному определению. Один из способов взглянуть на риск – представить вероятность того, что мы не добьемся безубыточности, то есть что наша экономия окажется меньше годовой стоимости аренды станка. Чем больше нам не хватит на покрытие расходов на аренду, тем больше мы потеряем. Сумма 600 000 дол. – это медиана интервала. Как определить реальный интервал значений и рассчитать по нему вероятность того, что мы не достигнем точки безубыточности?

Поскольку точные данные отсутствуют, нельзя выполнить простые расчеты для ответа на вопрос, сможем ли мы добиться требуемой экономии. Есть методы, позволяющие при определенных условиях найти интервал значений результирующего параметра по диапазонам значений исходных данных, но для большинства проблем из реальной жизни такие условия, как правило, не существуют. Как только мы начинаем суммировать и умножать разные типы распределений, задача обычно превращается в то, что математики называют неразрешимой или не имеющей решения обычными математическими методами проблемой. Поэтому взамен мы пользуемся методом прямого подбора возможных вариантов, ставшим возможным благодаря появлению компьютеров. Из имеющихся интервалов мы выбираем наугад множество (тысячи) точных значений исходных параметров и рассчитываем множество точных значений искомого показателя.

Моделирование методом Монте-Карло – превосходный способ решения подобных проблем. Мы должны лишь случайным образом выбрать в указанных интервалах значения, подставить их в формулу для расчета годовой экономии и рассчитать итог. Одни результаты превысят рассчитанную нами медиану 600 000 дол., а другие окажутся ниже. Некоторые будут даже ниже требуемых для безубыточности 400 000 дол.

Вы легко сможете осуществить моделирование методом Монте-Карло на персональном компьютере с помощью программы Excel, но для этого понадобится чуть больше информации, чем 90%-ный доверительный интервал. Необходимо знать форму кривой распределения. Для разных величин больше подходят кривые одной формы, чем другой. В случае 90%-ного доверительного интервала обычно используется кривая нормального (гауссова) распределения. Это хорошо знакомая всем колоколообразная кривая, на которой большинство возможных значений результатов группируются в центральной части графика и лишь немногие, менее вероятные, распределяются, сходя на нет к его краям (рис. 1).

Вот как выглядит нормальное распределение:

Рис.1. Нормальное распределение. По оси абсцисс число сигм.

Особенности:

  • значения, располагающиеся в центральной части графика, более вероятны, чем значения по его краям;
  • распределение симметрично; медиана находится точно посредине между верхней и нижней границами 90%-ного доверительного интервала (CI);
  • «хвосты» графика бесконечны; значения за пределами 90%-ного доверительного интервала маловероятны, но все же возможны.

Для построения нормального распределения в Excel можно воспользоваться функцией =НОРМРАСП(Х; Среднее; Стандартное_откл; Интегральная), где
Х – значение, для которого строится нормальное распределение;
Среднее – среднее арифметическое распределения; в нашем случае = 0;
Стандартное_откл – стандартное отклонение распределения; в нашем случае = 1;
Интегральная – логическое значение, определяющее форму функции; если аргумент «интегральная» имеет значение ИСТИНА, функция НОРМРАСП возвращает интегральную функцию распределения; если этот аргумент имеет значение ЛОЖЬ, возвращается функция плотности распределения; в нашем случае = ЛОЖЬ.

Говоря о нормальном распределении, необходимо упомянуть о таком связанном с ним понятии, как стандартное отклонение. Очевидно, не все обладают интуитивным пониманием, что это такое, но поскольку стандартное отклонение можно заменить числом, рассчитанным по 90%-ному доверительному интервалу (смысл которого интуитивно понимают многие), я не буду здесь подробно на нем останавливаться. Рисунок 1 показывает, что в одном 90%-ном доверительном интервале насчитывается 3,29 стандартного отклонения, поэтому нам просто нужно будет сделать преобразование.

В нашем случае следует создать в электронной таблице генератор случайных чисел для каждого интервала значений. Начнем, например, с MS – экономии на материально-техническом обслуживании. Воспользуемся формулой Excel: =НОРМОБР(вероятность;среднее;стандартное_откл), где
Вероятность – вероятность, соответствующая нормальному распределению;
Среднее – среднее арифметическое распределения;
Стандартное_откл – стандартное отклонение распределения.

В нашем случае:
Среднее (медиана) = (Верхняя граница 90%-ного CI + Нижняя граница 90%-ного СI)/2;
Стандартное отклонение = (Верхняя граница 90%-ного CI – Нижняя граница 90%-ного СI)/3,29.

Для параметра MS формула имеет вид: =НОРМОБР(СЛЧИС();15;(20-10)/3,29), где
СЛЧИС – функция, генерирующая случайные числа в диапазоне от 0 до 1;
15 – среднее арифметическое диапазона MS;
(20-10)/3,29 = 3,04 – стандартное отклонение; напомню, что смысл стандартного отклонения в следующем: в интервал 3,29*Стандарт_откл, расположенный симметрично относительного среднего, попадает 90% всех значений случайной величины (в нашем случае MS)

Распределение величины экономии на материально-техническом обслуживании для 100 случайных нормально распределенных значений:

Рис. 2. Вероятность распределения MS по диапазонам значений; о том, как построить такое распределение с помощью сводной таблицы см.

Поскольку мы использовали «лишь» 100 случайных значений, распределение получилось не таким уж и симметричным. Тем не менее, около 90% значений попали в диапазон экономии на MS от 10 до 20 долл. (если быть точным, то 91%).

Построим таблицу на основе доверительных интервалов параметров MS, LS, RMS и PL (рис. 3). Два последних столбца показывают результаты расчетов на основе данных других столбцов. В столбце «Общая экономия» показана годовая экономия, рассчитанная для каждой строки. Например, в случае реализации сценария 1 общая экономия составит (14,3 + 5,8 + 4,3) х 23 471 = 570 834 долл. Столбец «Достигается ли безубыточность?» вам на самом деле не нужен. Я включил его просто для информативности. Создадим в Excel 10 000 строк-сценариев.

Рис. 3. Расчет сценариев методом Монте-Карло в Excel

Чтобы оценить полученные результаты, можно использовать, например, сводную таблицу, которая позволяет подсчитать число сценариев в каждом 100-тысячном диапазоне. Затем вы строите график, отображающий результаты расчета (рис. 4). Этот график показывает, какая доля из 10 000 сценариев будут иметь годовую экономию в том или ином интервале значений. Например, около 3% сценариев дадут годовую экономию более 1М дол.

Рис. 4. Распределение общей экономии по диапазонам значений. По оси абсцисс отложены 100-тысячные диапазоны размера экономии, а по оси ординат доля сценариев, приходящихся на указанный диапазон

Из всех полученных значений годовой экономии примерно 15% будут меньше 400К дол. Это означает, что вероятность ущерба составляет 15%. Данное число и представляет содержательную оценку риска. Но риск не всегда сводится к возможности отрицательной доходности инвестиций. Оценивая размеры вещи, мы определяем ее высоту, массу, обхват и т.д. Точно так же существуют и несколько полезных показателей риска. Дальнейший анализ показывает: есть 4%-ная вероятность того, что завод вместо экономии будет терять ежегодно по 100К дол. Однако полное отсутствие доходов практически исключено. Вот что подразумевается под анализом риска – мы должны уметь рассчитывать вероятности ущерба разного масштаба. Если вы действительно измеряете риск, то должны делать именно это.

В некоторых ситуациях можно пойти более коротким путем. Если все распределения значений, с которыми мы работаем, будут нормальными и нам надо просто сложить интервалы этих значений (например, интервалы затрат и выгод) или вычесть их друг из друга, то можно обойтись и без моделирования методом Монте-Карло. Когда необходимо суммировать три вида экономии из нашего примера, следует провести простой расчет. Чтобы получить искомый интервал, используйте шесть шагов, перечисленных ниже:

1) вычтите среднее значение каждого интервала значений из его верхней границы; для экономии на материально-техническом обслуживании 20 – 15 = 5 (дол.), для экономии на трудозатратах – 5 дол. и для экономии на сырье и материалах – 3 дол.;

2) возведите в квадрат результаты первого шага 5 2 = 25 (дол.) и т.д.;

3) суммируйте результаты второго шага 25 + 25 + 9 = 59 (дол.);

4) извлеките квадратный корень из полученной суммы: получится 7,7 дол.;

5) сложите все средние значения: 15 + 3 + 6 = 24 (дол.);

6) прибавьте к сумме средних значений результат шага 4 и получите верхнюю границу диапазона: 24 + 7,7 = 31,7 дол.; вычтите из суммы средних значений результат шага 4 и получите нижнюю границу диапазона 24 – 7,7 = 16,3 дол.

Таким образом, 90%-ный доверительный интервал для суммы трех 90%-ных доверительных интервалов по каждому виду экономии составляет 16,3–31,7 дол.

Мы использовали следующее свойство: размах суммарного интервала равен квадратному корню из суммы квадратов размахов отдельных интервалов .

Иногда нечто похожее делают, суммируя все «оптимистические» значения верхней границы и «пессимистические» значения нижней границы интервала. В данном случае мы получили бы на основе наших трех 90%-ных доверительных интервалов суммарный интервал 11–37 дол. Этот интервал несколько шире, чем 16,3–31,7 дол. Когда такие расчеты выполняются при обосновании проекта с десятками переменных, расширение интервала становится чрезмерным, чтобы его игнорировать. Брать самые «оптимистические» значения для верхней границы и «пессимистические» для нижней – все равно что думать: бросив несколько игральных костей, мы во всех случаях получим только «1» или только «6». На самом же деле выпадет некое сочетание низких и высоких значений. Чрезмерное расширение интервала – распространенная ошибка, которая, несомненно, часто приводит к принятию необоснованных решений. В то же время описанный мной простой метод прекрасно работает, когда у нас есть несколько 90%-ных доверительных интервалов, которые необходимо суммировать.

Однако наша цель не только суммировать интервалы, но и умножить их на объем производства, значения которого также даны в виде диапазона. Простой метод суммирования годится только для вычитания или сложения интервалов значений.

Моделирование методом Монте-Карло требуется и тогда, когда не все распределения являются нормальными. Хотя другие типы распределений не входят в предмет данной книги, упомянем о двух из них - равномерном и бинарном (рис. 5, 6).

Рис. 5. Равномерное распределение (не идеальное, а построенное с помощью функции СЛЧИС в Excel)

Особенности:

  • вероятность всех значений одинакова;
  • распределение симметрично, без перекосов; медиана находится точно посредине между верхней и нижней границами интервала;
  • значения за пределами интервала невозможны.

Для построения данного распределения в Excel была использована формула: СЛЧИС()*(UB – LB) + LB, где UB – верхняя граница; LB – нижняя граница; с последующим разбиением всех значений на диапазоны с помощью сводной таблицы.

Рис. 6. Бинарное распределение (распределение Бернулли)

Особенности:

  • возможны только два значения;
  • существует единственная вероятность одного значения (в данном случае 60%); вероятность другого значения равна единице минус вероятность первого значения

Для построения случайного распределения данного вида в Excel использовалась функция: =ЕСЛИ(СЛЧИС()<Р;1;0), где Р - вероятность выпадения «1»; вероятность выпадения «0» равна 1–Р; с последующим разбиением всех значений на два значения с помощью сводной таблицы.

Метод впервые использовал математик Станислав Улам (см. ).

Дуглас Хаббард далее перечисляет несколько программ, предназначенных для моделирования методом Монте-Карло. Среди них и Crystal Ball компании Decisioneering, Inc, Денвер, штат Колорадо. Книга на английском языке была издана в 2007 г. Сейчас же эта программа принадлежит уже Oracle . Демо-версия программы доступна для скачивания с сайта компании. О ее возможностях мы и погорим .

См. главу 5 упоминавшейся книги Дугласа Хаббарда

Здесь Дуглас Хаббард под размахом понимает разность между верхней границей 90%-ного доверительного интервала и средним значением этого интервала (или между средним значением и нижней границей, так как распределение симметрично). Обычно под размахом понимают разность между верхней и нижней границами.