Вопрос: Какие открытия Изменили представление человечества о строение вселенной о форме земли. Приведите примеры изобритений,изменивший жизнь человека. Кто доказал, что Земля круглая? Кто открыл, что Земля круглая Открытия изменившие представления о строе

Цели: 1. повторить и закрепить в памяти учащихся знания о том, как исторически складывались и менялись представления людей о Вселенной;

2. развивать творческие способности, абстрактное мышление, умение быстро анализировать представленную информацию, тренировать память;

3. воспитывать интерес к окружающему миру, любознательность, умение слушать других и грамотно излагать собственные мысли; инициативность, уважение к людям, чувства долга, ответственности, стремление быть достойным гражданином своей Родины.

Оборудование: набор цветных мелков, циферблат часов.

Тип урока: урок-путешествие, исторический экскурс во времени.

Ход урока:

Организационный момент.

Актуализация знаний.

Учитель: Итак, мы изучили с вами одну из интересных тем о том, как менялись представления людей о Вселенной с течением времени. Сегодня я предлагаю вам совершить увлекательное путешествие в прошлое. Мы поплывем по волнам истории и увидим собственными глазами и Древнюю индию и Древнюю Грецию, познакомимся с Аристотелем и Птолемеем, заглянем в средневековую Европу, где поговорим с Николаем Коперником и его последователями, а затем незаметно вернемся в наше время. А поможет нам в этом чудесная машина времени. Но чтобы ее завести и отправиться в путешествие вам необходимо ответить на несколько несложных вопросов:

1. Что такое Вселенная? (Вселенная – это космос, то есть бесконечное пространство, внутри которого расположены различные небесные тела – звезды, планеты, кометы и др.)

2. на чем древние люди основывали свои представления о Вселенной? Соответствовали ли их знания действительности? (Представления древних людей о Вселенной не соответствовали действительности. В основе их знаний лежали различные мифы и легенды. Связано это было с тем, что наука в те времена была еще не развита, а все явления приписывались Божьей воле).

3. Каких древнегреческих ученых, занимавшихся проблемой устройства Вселенной вы знаете? (Пифагор, Аристотель, Аристарх Самосский, Клавдий Птолемей)

4. Что, по мнению большинства древнегреческих ученых, находится в центре Вселенной? (Земля).

5. Кто первым опроверг представления об устройстве Вселенной Клавдия Птолемея? (Николай Коперник)

6. Что, по мнению Николая Коперника, находится в центре Вселенной? (Солнце)

7. Назовите ученых последователей Николая Коперника. (Джордано Бруно, Галилео Галилей)

Исторический экскурс во времени – путешествие.

Учитель: Итак, мы отправляемся назад в прошлое.

Остановка 1 – Древняя Индия.

Учитель: рассказать о представлениях древних индийцев об устройстве Вселенной, сыграв роль жителя Древней Греции. Каждый ответ должен начинаться фразой: «Я утверждаю».

Ученик: Я утверждаю, что Земля плоская. Она лежит на спинах больших слонов, стоящих на панцире черепахи, которую несет на себе огромная змея-небо. Небо является границей земного пространства.

Остановка 2 – Древняя Греция.

(ученики рассказывают от первого лица,и одновременно изображая их убеждения на доске с помощью цветного мелка)

Аристотель: Я утверждаю, что Земля действительно имеет форму шара. Она неподвижна и находится в центре Вселенной. Вокруг Земли вращаются восемь небесных сфер, то есть восемь твердых и прозрачных шаров, на которых крепко и неподвижно закреплены небесные тела: планеты (Меркурий, Венера, Марс, Юпитер, Сатурн), а также Луна, солнце и звезды. Последней расположена девятая сфера. Она отвечает за движение остальных сфер. Ее я назвал двигателем Вселенной.

Клавдий Птолемей: Я утверждаю, что в центре Вселенной расположена шарообразная неподвижная Земля. Вокруг нее обращаются Луна, Солнце, пять планет (Меркурий, Венера, Марс, Юпитер, Сатурн) и «сфера неподвижных звезд», которую можно назвать концом Вселенной. Дальше ничего нет.

Остановка 3 – средневековая Европа.

Николай Коперник: Я утверждаю, что центром Вселенной является Солнце, вокруг которого движутся планеты, вращающиеся вокруг своих осей. Звезды составляют сферу, замыкающую пространство Вселенной. Они неподвижны и сильно удалены от Солнца и Земли.

Джордано Бруно: Я утверждаю, что Вселенная бесконечна. Солнце – это звезда. Вокруг всех звезд вращаются планеты, на которых, возможно тоже есть жизнь.

Галилео Галилей: Я утверждаю, что Солнце вращается вокруг своей оси. У Юпитера так же, как и у Земли, есть спутники, которые вращаются вокруг него подобно Луне. Я сконструировал телескоп, с помощью которого смог разглядеть неровности на Луне и темные пятна на Солнце.

Остановка 4 – наши дни.

Учитель: Как вы сейчас представляете Вселенную?

Ученики: Вселенная – это бесконечное число галактик, то есть скоплений звезд, вокруг которых вращаются планеты.

Подведение итогов.

Учитель: Заканчивая наше путешествие в прошлое, давайте сделаем выводы о том, как менялись представления людей о Вселенной с течением времени.

1. Древние люди считали Землю плоской, основывая свои знания на различных мифах.

2. Древние греки утверждали, что Земля имеет форму шара. Она неподвижна и расположена в центре Вселенной.

3. Ученые средневековой Европы доказали, что Вселенная бесконечна и не имеет центра. Солнце является центром Солнечной системы. Вокруг него по определенным орбитам движутся планеты. Солнце и планеты вращаются вокруг своей оси. Луна вращается вокруг Земли.

4. Современные люди представляют Вселенную в виде сверхскоплений галактик, включающих в себя скопления галактик. Галактики образуются из скоплений звезд. Звезды являются центром Солнечной системы, в состав которой входит наша планета Земля.

УРОК

Тема: Кометы, астероиды, метеоры и метеориты.

Предварительная подготовка к уроку: повторить по учебнику материал по теме «Кометы, астероиды, метеоры и метеориты», подготовка докладов.

Цели: 1. повторить и обобщить полученные знания о кометах, астероидах, метеорах и метеоритах;

2. развивать внимательность, способность анализировать и обобщать полученную информацию, задавать вопросы;

3. воспитывать интерес к предмету, ответственность при выполнении задания.

Оборудование: таблица «Движение кометы Галлея в Солнечной системе», снимок «Астероид Церера».

Ход урока:

1. Организационный момент

2. Повторение изученного материала.

Учитель: Сегодня мы посвятим наш урок очень интересной и занимательной теме, содержащей в себе много загадок, которые мы попытаемся разгадать. Нам известно, что вокруг Солнца, обладающего огромной силой тяготения, движутся по круговым орбитам 9 планет с 68 спутниками, мириадами астероидов, метеоритов и комет, а также огромное количество пыли и газа. Иногда в небе мы можем заметить звезду, которая не только движется, но и с каждой ночью становится ярче. И хвост у нее вырастает яркий, длинный, иногда на четверть неба. Потом эта звезда угасает, теряет хвост и через несколько недель исчезает. Древние греки назвали эти хвостатые звезды «кометес» - длинноволосыми. Теперь их называют кометами. О том, из чего состоит комета, нам расскажет один из докладчиков.

Докладчик 1: Из чего состоит комета?

Комета – это небольшое космическое тело, остоящее изо льда, пыли и камней. Она прилетает из глубин космоса. Комета не светится сама, а ярко освещается Солнцем, как планеты и Луна. Комета немного мельче планет, спутников и астероидов. При приближении к Солнцу лед кометы начинает плавиться. Он превращается в воду. Потом вода начинает испаряться. Пар увлекает за собой пылинки. И за кометой вытягивается длинное облако пара и пыли. Оно тоже ярко освещается Солнцем. Вот и образуется необыкновенный огненный хвост.

Обогнув Солнце комета начинает удаляться. Теперь она понемногу остывает. Вода снова превращается в лед. Хвост уменьшается, а потом пропадает вовсе, и комета исчезает. Самая знаменитая комета – комета Галлея – подходит к Солнцу один раз в 76 лет. В это время она пролетает сравнительно недалеко от Земли, и ее можно наблюдать невооруженным глазом. В последний раз люди видели эту комету в 1986 году, она оказалась между Солнцем и Землей, так что наша планета прошла сквозь кометный хвост. Следующее ее появление ожидается в 2062г.

Учитель: Кроме 9 больших планет, вокруг Солнца обращается множество малых планет, или астероидов. Астероид в переводе с греческого означает «звездоподобный». В настоящее время обнаружено более 5 тысяч астероидов. Послушаем доклад об астероидах.

Докладчик 2: Астероиды.

Астероиды – это обломки разрушившейся планеты или, наоборот, не сумевшие образовать планету. Размер большинства астероидов не превышает 1 км в поперечнике. Значительная часть астероидов движется между орбитами Марса и Юпитера, составляя так называемый пояс астероидов, но некоторые подходят к Солнцу ближе Меркурия, а другие удаляются от него дальше Сатурна (например, астероид Хирон) . с открытием большого числа астероидов появилась необходимость дать им всем имена. Так появились Астрея, Геба, Ирис, названных в честь имен римских и греческих богинь. В начале 20 века были открыты астероиды, орбиты которых почти совпадали с орбитой Юпитера, их назвали в честь героев гомеровской «Иллиады»: Ахилл, Одиссей, Диомед, Приам.

Крупнейший астероид, диаметр которого составляет 1000 км – это астероид Цереры, названный в честь богини плодородия, покровительницы Сицилии. Открыл его итальянский астроном Джузеппе Пианцци, обнаружив в 19 веке свтило, перемещавшееся на фоне неподвижных звезд.

Учитель: В межпланетном пространстве движется горомоное количество так называемой космической пыли, это остатки разрушившихся комет. Временами они врываются в атмосферу и вспыхивают светящейся черточкой на высоте 80-100 км над Землей. Эти световые вспышки называют метеорами.

Докладчик 3: Падающие звезды или метеоры.

Падающие звезды – это метеоры, состоящие из металла и твердых пород. Большинство. метеоров очень малы – не больше 30 метров в диаметре. В атмосфере метеор нагревается и сгорает, оставляя за собой яркий светящийся след. Грандиозное зрелище – метеорный дождь или звездный. Метеорный дождь – возникновение на ночном небе множество метеоров, «падающих звезд» это появляется в результате встречи Земли с роем твердых частиц – метеорных тел. Например: метеорный дождь Леониды (ноябрь 1799 г.), Дракониды, который дал около 30 тысяч метеоров в час.

Докладчик 4: Метеориты.

Иногда особо крупные метеоры достигают земной поверхности. Эти более крупные тела называют метеоритами. На месте падения метеорита остается глубокая вмятина, или кратер. Самый знаменитый метеоритный кратер – Аризонский (США), его диаметр – 1300 м., а глубина 183 м. предполагаемый возраст кратера 25 тысяч лет. На протяжении года на Землю падает около 2 тысяч метеоритов. Падение метеорита представляет собой яркие световые и акустические явления, причина которых – взаимодействие летящего с огромной скоростью тела с атмосферой Земли. Трение о воздух разогревает и заставляет светиться тело, то есть возникает очень яркое явление метеора – болиды, которые видны даже днем. По веществу метеориты делят на два основных класса: железные и каменные. Самый крупный целый кусок метеорита нашли в Южной Америке в 1920 г. – это метеорит Гоба. Он весит около 60 т, а его размер 3 метра на 2,5 метров..

Подведение итогов: делаются основные выводы.

1. В состав Солнечной системы входят астероиды и кометы.

2. Ядро кометы состоит из смерзшихся пыли и газа.

3. В межпланетном пространстве движутся частицы космической пыли и более крупные тела – обломки астероидов.

4. Вспышки света, возникающие при сгорании в земной атмосфере частичек космической пыли, называют метеорами, а космические тела, упавшие на Землю – метеоритами.

5. Падающие звезды – это частицы горных пород, отколовшиеся от комет.

Домашнее задание: изобразить в тетради комету, астероид, метеор или метеорит по собственному представлению.

доктор педагогических наук Е. Левитан

Вселенная, открытая во втором тысячелетии

Безвозвратно уходит, погружаясь в Лету, второе тысячелетие новой эры. Оно во многом преобразило цивилизацию нашей планеты и среду обитания людей, распростёршуюся ныне далеко за пределы Земли и околоземного космического пространства. Изменился образ жизни людей, их представления о себе и мирах, которые сейчас принято называть микромир, макромир, мегамир. Каждый из них был заново открыт наукой уходящего тысячелетия.

Средневековое фантастическое представление системы мира. (По „Астрономии“ Фламмариона.)

Что же именно, надо полагать, ярче всего запечатлят страницы будущей истории науки о мегамире, то есть о Вселенной? Попробуем выделить „главное“ среди множества сделанных за эту тысячу лет открытий в астрономии, которая теперь включает в себя астрофизику, астрометрию, небесную механику, космогонию, космологию и неразрывно связана с физикой, математикой, химией, биологией, науками о Земле, а также с различными областями техники и, конечно, с космонавтикой.

В уходящем тысячелетии были открыты законы физики, имеющие поистине всемирное значение, потому что „работают“ как на Земле, так и в далёком космосе. Они позволили понять (благодаря открытиям Галилея, Ньютона, Максвелла, Планка, Эйнштейна и других великих физиков) многие наблюдаемые во Вселенной явления и процессы.

Современные историки астрономии по дошедшим до нас памятникам культуры смогли реконструировать древнейшие периоды становления астрономии, восходящие к её зарождению, осознанию наблюдаемого видимого движения светил на дневном и ночном небе, к первым попыткам выделить созвездия в кажущемся звёздном хаосе.

Одно из древних изображений мироздания по представлению Коперника.

С рождением письменности стали появляться обобщающие астрономические произведения - звёздные каталоги, трактаты, многотомные труды великих древних астрономов. История астрономии обрела надёжные источники для анализа того, как развивались науки о Вселенной.

Человек, серьёзно заинтересовавшийся историей астрономии, сейчас имеет возможность получить массу сведений о ней, изучая соответствующую специальную и научно-популярную литературу. Перед взором этого любознательного читателя пройдёт бесконечная череда больших и малых астрономических открытий, десятки и сотни имён их авторов. Раскроется смысл грандиозного прогресса астрономии в ХХ веке и особенно во второй его половине.

Однако цель данной публикации значительно скромнее, мы ограничимся попыткой взглянуть со стартовой площадки третьего тысячелетия на то, что, если можно так сказать, было самым важным в истории астрономии за последнюю тысячу лет.

Николай Коперник

На стене небольшого кабинета физики и астрономии в одной из московских школ, где я стараюсь заинтересовать ребят наукой о Вселенной, висят рядом два портрета - Николая Коперника и Юрия Гагарина. И хотя в кабинете есть портреты и других замечательных людей, а также привлекающие внимание карты звёздного неба, уникальные по своей наглядности карты Луны, современное мозаичное изображение Млечного Пути, подвешенная к потолку модель планетной системы, всё же именно „соседство“ Коперника и Гагарина неизменно вызывает особый интерес не только у школьников, но и у взрослых посетителей, нередко заглядывающих в кабинет. Удивление сменяется пониманием и одобрением, когда напоминаешь, что Коперник, по сути дела, открыл (1543 год) шестую планету - нашу Землю (пять других, видимых невооружённым глазом - Меркурий, Венера, Марс, Юпитер, Сатурн, - были известны давно как светила, „блуждающие“ на фоне звёздного неба).

Клавдий Птолемей

(II век н. э.)

А Гагарин - гордость нашей страны и человек, ставший известным всему миру после космического полёта 12 апреля 1961 года, - первый, кто увидел Землю, находясь вне её, со стороны, увидел как небесное тело, как планету во всей красе и был восхищён ею. Конечно, речь идёт о совершенно разных по своей научной значимости событиях и разделённых несколькими веками. Но оба эти открытия символичны, ибо переводят в ранг прописной истины представление о том, что мы - „небожители“, обитающие на одном из множества небесных тел.

Теперь это полагается знать даже младшим школьникам. А ведь до середины нынешнего тысячелетия представление о месте Земли во Вселенной было совсем иным.

„Математическое научение неба“, изложенное великим древнегреческим астрономом Клавдием Птолемеем (II век н. э.) в его главном труде „Альмагест“, основывалось на идущем от его предшественников утверждении о том, что неподвижная шарообразная Земля находится в центре Вселенной. С помощью различных (порой весьма хитроумных) предположений о характере движения планет вокруг Земли Птолемей доказывал правильность этой геоцентрической системы мира. Сам он считал её лишь математической моделью, позволяющей разобраться в запутанных видимых движениях светил и предвычислять их положение на небе. Система Птолемея почти четырнадцать веков практически неограниченно властвовала в науке.

Галилео Галилей

Только в XVI веке, то есть уже во второй половине нашего тысячелетия, на смену ей пришла гелиоцентрическая система мира. Её создатель - великий польский астроном Николай Коперник. В ней утверждалось, что не Земля, а Солнце занимает центральное положение во Вселенной, говорилось о „сфере неподвижных звёзд“, о круговых орбитах планет. Здесь впервые и навсегда было определено (а потом и доказано), что Земля - одна из планет Солнечной системы. Это открыло путь ко всё более и более детальному изучению Земли. И, наконец, в ХХ веке - к космическим полётам на Луну, к планетам и их спутникам, астероидам и кометам.

Зрительные трубы Галилея: телескоп, с помощью которого люди впервые смогли увидеть кратеры на Луне, фазы Венеры, четыре спутника Юпитера, пятна на Солнце, множество звёзд Млечного Пути.

Освоение Солнечной системы началось уже в первые десятилетия космической эры, отсчёт которой пошёл от 4 октября 1957 года - даты запуска первого искусственного спутника Земли (ИСЗ). Запуск произведён в нашей стране. Можно утверждать: во втором тысячелетии произошло открытие Солнечной системы. Хотя, конечно, и сейчас многое в наших знаниях о ней требует уточнения. Это вопросы и о происхождении Солнечной системы, о природе входящих в неё небесных тел, и о возможности существования хотя бы простейших форм жизни вне Земли. Можно надеяться, что все эти загадки в значительной мере прояснятся уже в XXI веке. Но о том, как устроена Солнечная система, что представляют собой входящие в неё большие и малые небесные тела, каким закономерностям подчинено их движение и насколько устойчива Солнечная система, - уже в основном известно.

Астрономию справедливо считают древнейшей, может быть, даже самой первой наукой на Земле. Её зарождение относится к эпохе, отдалённой от нас, возможно, на десятки тысяч лет. В таком временном масштабе уходящее тысячелетие - лишь небольшая часть истории науки о Вселенной. Но зато какая!

Джордано Бруно

Сейчас, когда один за другим вступают в строй гигантские оптические телескопы, интенсивно развиваются радиоастрономия и рентгеновская астрономия, а космонавтика открыла невиданные ранее возможности для внеатмосферных наблюдений, превративших „оптическую“ астрономию во „всеволновую“, трудно представить, что лишь в начале XVII века люди впервые стали проводить простейшие наблюдения с крошечным телескопом… А до этого все астрономические наблюдения велись только невооружённым глазом. Но как много древние и средневековые астрономы сумели увидеть и понять на звёздном небе, подметить и осмыслить особенности различных небесных явлений! Нас поражает и восхищает то, что сохранилось от громадных культовых сооружений, которые в далёком прошлом использовались ещё и в качестве астрономических обсерваторий. Мы знаем о разнообразных угломерных инструментах, с которыми работали астрономы во многих странах. Коперник всего несколько десятилетий не дожил до того времени, когда появилась возможность увидеть в телескоп кратеры на Луне, фазы Венеры, четыре спутника Юпитера, пятна на Солнце, множество звёзд Млечного Пути…

Иоганн Кеплер

Всё это пришло, когда итальянский учёный Галилео Галилей построил телескоп, который считается первым. Это дало огромный скачок в росте астрономических знаний.

Прошло ещё немалое время и стали блестяще подтверждаться гениальные догадки о природе звёзд, высказанные некоторыми древними мыслителями и более чётко сформулированные Джордано Бруно в XVI веке. В опровержение представлений о „неподвижных“ звёздах, как эдаких „серебряных гвоздиках“, воткнутых в небесный свод (в средневековье так думали о звёздах, хотя задолго до этого некоторые древние мыслители высказывали предположение, что звёзды могут быть раскалёнными светилами), одно за другим стали появляться доказательства тому, что звёзды - это далёкие солнца в беспредельном пространстве. Что именно эти громадные раскалённые светящиеся плазменные (водородно-гелиевые) шары составляют основное „население“ Вселенной. Они входят в состав систем различной сложности - от двойных звёзд и звёздных скоплений до гигантских галактик.

Среди мира звёзд, поражающего многообразием, где наряду с „обычными“ есть не совсем и совсем необычные (физические переменные, новые, сверхновые, различные звёзды-карлики, нейтронные), наше Солнце оказалось довольно „заурядной“ звездой. Хотя обнаружить в Галактике другие точно такие звёзды, как Солнце, очень трудно.

Исаак Ньютон

Солнце не нужно было открывать: естественно, что люди знали его всегда, но знали о нём очень мало. Довольно долго, примерно до XVIII века, его вместе с Луной включали в число семи планет. Даже в середине XIX века высказывались предположения о возможности жизни на Солнце.

Ну а с точки зрения нынешних представлений о природе Солнца, его строении, источниках энергии, феноменах циклической солнечной активности и их земных проявлений можно сказать, что Солнце было открыто лишь в конце XIX - первой половине ХХ века. И значение этого открытия невозможно переоценить, так как Солнце - не только центр Солнечной системы, не только источник жизни на Земле, но и своеобразная лаборатория, дающая астрофизикам возможность детально исследовать одну из звёзд, самую близкую к нам.

Вильям Гершель

Утверждая, что звёзды - это далёкие солнца, Джордано Бруно с присущим ему энтузиазмом и страстью рассуждал и о том, что вокруг других звёзд тоже должны быть планеты. Эта вполне логичная гипотеза получила реальное подтверждение лишь в самом конце ХХ века. Вокруг десятков звёзд сейчас открыты не только протопланетные диски (в них рождаются планеты), но и уже образовавшиеся планеты. Как правило, экзопланеты (те, что вне нашей Солнечной системы) довольно массивны, сравнимы с такими гигантами, как Юпитер, Сатурн, и жизнь на них невозможна. Однако уже есть данные и об открытии внесолнечных планет, по массе близких к планетам земной группы.

Модель Галактики

по Гершелю.

Подобные открытия воодушевляют искателей внеземных цивилизаций. Кстати говоря, в последние десятилетия эта проблема приобрела научный статус, хотя ещё сравнительно недавно большинство учёных считали её всего лишь увлекательной научной фантастикой. Абсолютное „молчание“ Вселенной, то есть то, что до сих пор нет бесспорных космических проявлений деятельности гипотетических цивилизаций и посещений ими Земли, конечно же, в известной мере озадачивает энтузиастов поисков внеземной жизни, но не лишает их надежды на успех… И оснований у наших современников для подобного оптимизма, безусловно, во много раз больше, чем у тех, кто в прошлом отстаивал идею множественности обитаемых миров.

Эдвин Хаббл

Хотя бы потому, что принципиальным образом изменилось представление о масштабе и структуре Вселенной, о практически бесконечном числе входящих в неё небесных тел и их систем. Те несколько тысяч звёзд, которые доступны наблюдению невооружённым глазом в идеальных условиях, - ничтожно малая часть светил, входящих в нашу Галактику, содержащую, по разным оценкам, сотни миллиардов или даже триллион звёзд.

Современные телескопы открывают перед астрономами удивительный и загадочный мир галактик.

Открытие Галактики - тоже одно из величайших достижений астрономии XVIII-XX веков. В отличие от Земли, которой могут любоваться космонавты во время своих полётов и которую всесторонне исследуют „извне“ специализированные ИСЗ, Галактика недоступна (может быть, лишь пока?) внешнему обзору. Исследования её ведутся только „изнутри“. Этим астрономы успешно занимаются, начиная с английского астронома Вильяма Гершеля и по сей день. Кропотливо подсчитывая число звёзд на многих сотнях отдельных площадок (метод „черпков“) и выявляя обнаруживаемые при этом закономерности, Гершель сумел определить общую форму Галактики (именно он назвал её Млечный Путь), он построил и первую модель Галактики. В конце XVIII - начале ХIХ века этот талантливейший астроном понял, что наш „звёздный остров“ неизмеримо больше Солнечной системы. С этого, а также с изучения мира загадочных „туманностей“ началось открытие крупномасштабной структуры Вселенной.

Солнечная система в современном представлении.

В постепенно раскрываемой картине мироздания нашей „планете людей“ отводилось всё более скромное место. Сначала стало ясно, что Земля - не центр Солнечной системы, потом, что сама Солнечная система расположена довольно далеко от центра Галактики, а наша Галактика - одна из множества разнообразных галактик „расширяющейся Вселенной“, в которой понятие „центра“ вообще не имеет смысла.

Такой увидели Землю астронавты „Аполлона-17“, расставаясь с Луной. Декабрь 1972 года.

Внегалактической астрономии и релятивистской космологии (теории нестационарной вселенной) в ХХ веке потребовался ничтожно малый в масштабах истории астрономии срок, чтобы создать современную грандиозную картину эволюционирующей Вселенной. Вспомним, что объектами исследования Солнечной системы были Солнце, планеты с их спутниками и разные малые тела Солнечной системы. Объектами звёздной астрономии - звёзды (расстояния до них, их пространственное расположение, движение, природа) и наша Галактика. В последние десятилетия (одновременно со всем этим) усилия астрономов и мощь их новейших инструментов нацелены на исследование мира галактик, включая квазары (космические объекты, удалённые от Солнечной системы на несколько тысяч мегапарсек, а это миллиарды(!) световых лет. Обнаружить квазары удаётся потому, что они излучают в десятки раз больше энергии, чем самые мощные галактики). Изучаются системы галактик - Местная Группа (наша Галактика с её спутниками), Туманность Андромеды и наконец - скопления и сверхскопления галактик. Последние, по-видимому, представляют собой самые крупные фрагменты нашей Вселенной (Метагалактики). Они как бы сосредоточены в узлах объёмных сот (ячеек).

Изображение Солнца в рентгеновских лучах, полученное во время внеатмосферных наблюдений.

Наблюдаемое расширение Метагалактики - самый грандиозный из всех известных эволюционных процессов во Вселенной. Открытие этого явления неразрывно связано с именем американского астронома Эдвина Хаббла (1889–1953), в честь которого назван уникальный космический телескоп, работающий на околоземной орбите с 1990 года.

Экстраполяция в ранний период расширения Метагалактики привела не только к гипотезам о „Большом Взрыве“, „горячей Вселенной“ и сценариям „раздувающейся Вселенной“, но и к первым (совсем недавним) попыткам экспериментально воспроизвести в земных лабораториях некоторые из тех экзотических процессов, которые, возможно, примерно 15 миллиардов лет назад происходили в совсем юной Вселенной. Это был период, когда ещё только-только появлялись многие из сегодня привычных „элементарных“ частиц. И то, что этот процесс в известной степени удаётся воспроизвести в лабораторных условиях, - пожалуй, ещё один важный факт в пользу современных представлений о рождении нашей Вселенной. Реликтовое излучение, возникшее всего через несколько сотен лет после „Большого Взрыва“, открыто в 1965 году и до сих пор скрупулёзно исследуется различными методами.

Туманность Андромеды - ближайшая к нам и наиболее изученная галактика. Разумные обитатели этого звёздного острова видят нашу Галактику примерно такой же.

Как всегда, с ростом области знания растёт область незнания того, что пока ещё непознано и представляется таинственным. Даже простое перечисление проблем, ждущих решения в грядущих веках, составит огромный список. Поэтому ограничимся лишь несколькими примерами.

Чёрные дыры, предсказанные общей теорией относительности, астрофизики начали открывать в самые последние годы уходящего тысячелетия. Их обнаружили и в системах двойных звёзд, и в центральных областях некоторых галактик. К каким новым представлениям о свойствах пространства и времени это приведёт? Не будет ли когда-нибудь найдено практическое воплощение фантастической идеи о путешествиях во времени с помощью чёрных дыр?

Космический телескоп имени Хаббла запечатлел кольца вокруг вспыхнувшей в 1987 году сверхновой звезды в Большом Магеллановом Облаке. Фото 1998 года.

А как разрешится загадочная проблема „скрытой массы“ или „тёмной материи“, из которой, возможно, состоит более 90 процентов нашей Вселенной? Где и как распределена эта пока ещё таинственная материя, но, как уже известно, обладающая подобно обычному веществу тяготением? Учёные стремятся выяснить это, исследуя улавливаемые искажения форм многих тысяч галактик. Полагают, что эти деформации связаны с воздействием „скрытой массы“. Что это за масса? Аморфные скопища каких-нибудь экзотических частиц, или просто неуловимые по разным причинам космические системы (вроде галактик), или вообще что-то ещё совершенно неведомое нам, похожее, например, на „физический вакуум“? Надо полагать, что это выяснится уже в недалёком будущем.

Человек на Луне. Впервые он вступил на неё 20 июля 1969 года. На фото: Эдвин Олдрин (экспедиция США „Аполлон-11“). Снимок сделан Нилом Армстронгом. Его отражение видно в стекле шлема Олдрина.

Найдёт ли подтверждение гипотеза о множестве мини-вселенных, одна из которых Метагалактика? Увенчается ли успехом поиск „братьев по разуму“ с помощью специально созданных гигантских телескопических систем и станут ли возможными практически значимые контакты с ними? Будет ли осуществляться идея Циолковского об освоении землянами миров, далёких от нашей планеты? Многие из этих вопросов, строго говоря, выходят за рамки чисто астрономических проблем. Но они показывают, что если земной цивилизации предстоит стать цивилизацией космической, то в этом процессе астрономия будет играть исключительно важную роль. И, кто знает, быть может, через сотни или даже тысячу лет некоторые из перечисленных здесь загадок люди станут относить к числу своих важнейших открытий в области познания и освоения Вселенной. Впрочем, вряд ли сегодня возможно предугадать, какие достижения науки земляне будут перечислять в канун четвёртого тысячелетия. Ясно лишь одно: астрономии как науке навсегда суждено оставаться вечно юной долгожительницей.

Первое послание внеземным цивилизациям, которое было отправлено в космическое пространство 16 ноября 1974 года.

А Человек? В современной безгранично сложной пространственно-временной картине мироздания он, казалось бы, совершенно затерялся. Но когда-то он ощущал себя „микрокосмом“, неким миниатюрным подобием окружающего „трёхслойного“ мира - земного, скрытого под землёй и распростёртого над землёй. Надо думать, что сравнить с собой такую нехитрую модель мироздания проще, чем современную.

К сожалению, из-за повсеместно бытующей астрономической безграмотности подавляющее большинство нынешних землян не имеют почти никакого представления о той картине Вселенной, какую раскрывает наука в ХХ веке. Поэтому в наше время „обычному“ человеку трудно ощутить себя „микрокосмом“, неразрывно связанным со Вселенной. Между тем именно такая связь составляет то, что принято называть „антропокосмической сущностью духовности“. Автор, развивая эту идею в своих публикациях (в том числе на страницах научно-популярного журнала Российской АН „Земля и Вселенная“), приходит к выводу о связи двух социокультурных проблем - ликвидации астрономической безграмотности и возрождении утерянной в последние годы духовности. Можно предположить, что в будущем актуальность решения этих проблем станет возрастать.

Сторонники „антропного принципа“, ставшего в последнее десятилетие предметом оживлённых дискуссий, утверждают, что в самом рождении и эволюции нашей Вселенной, по сути, уже запрограммировано появление жизни и разума. В частности, существование жизни на Земле обусловлено множеством тонко „подогнанных“ условий, удивительным образом реализуемых как в микромире (например, набор определённых элементарных частиц), так и в мегамире (например, существование Солнца и нашей планеты, пригодной для жизни). Не ставит ли это вновь Человека (причём, конечно, в принципиально ином смысле) в центр Мироздания? Не приведёт ли развитие подобных идей к разгадке тайны космической миссии Жизни и Разума в эволюционирующей Вселенной? Интересно, какие ответы даст на эти вопросы наука грядущего тысячелетия…

Океаническая вода по большей степени прозрачна. Цвет, который вы видите, зависит от того, в чем она - грязно-коричневый или желтый вдоль береговой линии, где река впадает в море, или серовато-зеленый поодаль, благодаря водорослям и мириадам крошечных организмов.

Тем не менее лучше всего мы знакомы с верхними пределами океана, в которые проникает солнечный свет. Здесь планктон использует свет для фитосинтеза. Одним из побочных продуктов этого процесса в море, как и на суше, является кислород. Этот кислород путешествует через океаническую воду, спускаясь даже в холодную тьму на дне. В холодной воде кислород хорошо растворяется и переносится подводными течениями.

Однако в некоторых местах вроде норвежских фьордов морская вода застаивается. В ней скапливается слишком много потребителей, которые используют весь кислород. Маленькие твари в воде хотят жить, поэтому местная пищевая цепочка сначала переключается на азот, а когда и он заканчивается - на серу. Пищевая цепь на основе серы производит много сероводорода, который крайне вреден для большинства форм морской жизни, но очень любим маленькими зелеными и фиолетовыми едоками серы. Кислород для них смертелен, но в розовой и фиолетовой воде такие бактерии чувствуют себя замечательно, если находят нужные условия для жизни. Сегодня их можно найти в Черном море, в нескольких фьордах и озерах.

Откуда они берутся? Что ж, на самом деле, они - одни из старейших обитателей Земли.

Пигменты маленьких фиолетовых едоков серы были обнаружены в скале возрастом 1,64 миллиарда лет в северной Австралии. Эти бактерии появились после того, как Земля потеряла свои железистые формации (они перестали образовываться в море порядка двух миллиардов лет назад). Геологи долго ломали голову, почему же железистые формации перестали появляться. Две основные теории включали обилие кислорода в океане и варево вонючих сероводородов.

Открытие этих пигментов - плюс для сероводорода. Также это означает, что древний серный океан был полон счастливых маленьких едоков серы, а значит имел прекрасный фиолетовый оттенок.

Но откуда взялась вся вода на древней Земле?

Большая часть земной воды старше Солнечной системы


образовалась из огромного облака межзвездной пыли. Пыль сухая. Но некоторый кислород и водород в облаках смог объединиться в старую добрую воду H2O. Тем не менее из внутренней Солнечной системы ее всю выдуло, когда загорелось Солнце. Единственное место, где можно было найти воду после этого, были края внешней Солнечной системы, где блуждают кометы.

Ученые и поняли, что океаны Земли образовались порядка одного миллиарда лет после того, как сформировалась сама планета. Это могло бы объяснить наличие океанов вулканической дегазацией и падением ледяных комет. Вулканы могли выпустить немного воды, оставшейся внутри Земли во время ее формирования. Остальная часть воды прилетела вместе с бомбардировкой кометами в начале жизни Солнечной системы.

История, конечно, хороша. Но верна лишь отчасти.

Не так давно ученые выяснили, что 30-50 процентов земной воды старше Солнечной системы. Другими словами, межзвездный лед был здесь еще до того, как пылевые облака образовали нашу звездную систему. Ученые использовали метод относительного датирования, чтобы показать, что половина воды и, включая ту, которая в вашем теле, возрастом более 4,6 миллиарда лет. Более точную дату ученые назвать постеснялись, но их выводы говорят о том, что древняя вода может быть такой же древней, как сама Вселенная.

Жизнь на Земле могла прийти с Марса


Иногда метеоры скользят по ночному небу, иногда удивляют нас средь бела дня. Эти маленькие фрагменты астероида или кометы обычно сгорают в атмосфере. Если они падают на Землю, их называют метеоритами.

В 1980-х годах, после миссий «Викингов» на Марс, ученые с удивлением обнаружили, что некоторые земные метеориты на самом деле попали к нам с Красной планеты. Сегодня в NASA уверены, что у них есть по меньшей мере 124 обломка марсианской недвижимости. Марсианские метеориты обладают вулканической природой, а сам Марс известен наличием крупнейших вулканов в Солнечной системе. Тем не менее даже самое крупное извержение горы Олимп не могло забросить камни на Землю.

После долгих лет детективной работы некоторые эксперты пришли к выводу, что извержение выбросило обломки лавы возрастом 4,5 миллиарда лет примерно 15 миллионов лет назад. На Землю они порядка 13 000 лет назад. Некоторые из них содержат косвенные доказательства того, что вулканическая порода имела контакт с водой, в которой, возможно, некогда гнездилась жизнь.

Звучит маловероятно, но жизнь всегда находит выход. Сегодня в Йеллоустоуне крошечные организмы под названием экстремофилы выживают в горячих источниках и камнях. Маленькие живучие супервулканические существа вполне могли пережить суровые условия жизни на Марсе. Они даже могли бы пережить падение на Землю, если бы оказались достаточно глубоко внутри большой каменной плиты. Что касается совсем уж фееричного огненного падения на Землю, ученые доказали, что эндолитам понадобился бы тепловой экран всего в 5 сантиметров толщиной.

Конечно, земной жизни уже порядка четырех миллиардов лет, а эти марсианские туристы прибыли недавно. Но мы нашли не все метеориты. Безусловно, они лежат на Земле, и, вне всяких сомнений, другие метеориты с Марса могли навещать Землю, когда она была совсем молодой. Даже если они не привезли с собой формы жизни, они могли привезти минералы, крайне необходимые для развития юной жизни на Земле.


Геологи называют первые годы Земли гадеем в честь Гадеса, под которым древние греки имели в виду ад. Согласно теории, жар во время образования Земли расплавил большую часть планеты, и понадобилось много времени, чтобы на ней образовалась относительно холодная корка современности. Большинства минералов гадейского периода на Земле уже нет, благодаря выветриванию и тектонике плит. Все, что осталось, это крошечные кристаллы циркона.

Циркон (силикат циркония) - весьма драгоценный материал, но также крайне полезный для ученых по двум причинам. Во-первых, он достаточно прочный, чтобы пережить детский период геологии. Циркон может извергнуться из вулкана, попасть между двух тектонических плит, осесть под километровым слоем осадков и просто пожать плечами, нарастив еще один слой. Потом приходят геологи и читают этот слой как историческую книгу. Во-вторых, циркон содержит крошечную долю урана - недостаточно, чтобы нанести вам вред, но достаточно, чтобы провести точное научное рандеву.

Исследователи протестировали старейший из известных цирконов, который прошел долгий путь из гадейского периода. Оказалось, что минерал кристаллизовался при гораздо более низкой температуре, чем ожидалось. Дальнейший анализ показал, что вода и другие условия, пригодные для жизни, возможно, были уже тогда, когда сформировался кристалл. 4,4 миллиарда лет назад на Земле, возможно, уже были континенты и океаны, наполненные живительной водой, а не смертельной лавой.

Тем не менее, Земля обладает железным ядром. Это означает, что планета должна была быть сущим адом по крайней мере недолгое время после образования.

Золото и платина упали к ядру Земли


Металлы вроде золота и платины редкие на Земле, но распространены на некоторых астероидах. Эти астероиды образовались из того же облака пыли, что и Земля. Почему же вокруг нас не валяются золотые россыпи, почему мы не живем в платиновых хибарах?

В начале гадейского периода (после образования Земли но до образования циркониевых кристаллов, о которых мы говорили) температура была достаточной, чтобы расплавить железо. Железо и его соседи по периодической таблице - тяжелые металлы. Таким образом, расплавленные капли чистого железа, а также золота, платины и так далее начали оседать, понемногу смещаясь к центру планеты.

Затем что-то размером с Марс врезалось в Землю, выбросив в космос материал, который впоследствии стал Луной. Это столкновение привело к массивному плавлению Земли. Много железа и практически все остальные члены этого клуба опустились на самое дно, в ядро планеты, где и пребывают по сей день.

Северный и Южный полюса не всегда были ледяными


Вероятнее всего, столкновение, которое привело к рождению Луны, наклонило ось Земли настолько, что большая часть солнечного света падает на экватор. Тем не менее это не означает, что полюса всегда были ледяными. Всего 34 миллиона лет назад - мгновение по меркам геологов - средняя температура Антарктиды была 14 градусов по Цельсию. Вода в близлежащих морях была 22 градуса - купаться можно.

На протяжении большей части своей истории Земля не могла похвастать большими ледяными шапками. Количество поступающего солнечного света не имеет значение. Значение имеет уровень углекислого газа, а в результате и глобальное потепление.

Ученые толком не знают, почему полюса замерзли именно 20 миллионов лет назад или около того. Некоторые полагают, что это произошло после того, как Индия и Азия столкнулись на тектоническом уровне. В результате этого столкновения выросли Тибет и Гималаи. Поскольку выветривание эффективнее происходит на неровной поверхности, много кусков континентальной породы смыло в океаны, что увеличило накопительный потенциал углерода в морях. Углерод выпал в атмосферу, и парниковый эффект сменился глобальным похолоданием.

Но не все ученые принимают эту идею. Говорят, что недостаточно доказательств.

Земля могла остыть из-за муравьев


Хотя на полюсах не так давно было тепло, все температурные рекорды Земли за последние 200 миллионов лет были установлены еще в эпоху динозавров. Тогда, благодаря парниковому эффекту, тропики запекались при 35 градусах по Цельсию, а на высоких широтах было порядка 20 градусов. Потом, примерно 65 миллионов лет назад, все остыло, не считая нескольких температурных скачков.

Выветривание действительно играет большую роль в глобальном углеродном цикле, поэтому ученые часто обращаются к этому объяснению. В конце 1980-х годов один из таких ученых из Аризонского университета начал долгосрочный эксперимент. Он разбил скальную породу и поместил в разные типы окружающей среды - от голой земли до гнезд муравейников. Каждые пять лет он изучал образцы и сравнивал результаты выветривания с исходными образцами. Спустя двадцать пять лет он с удивлением обнаружил, что муравьи разрушили породу в 175 раз быстрее, чем обычное выветривание.

Обычные муравьи являются одними из самых сильных агентов выветривания минеральных веществ. Возможно, нет ничего случайного в том, что первые муравьи появились порядка 65 миллионов лет назад, как раз тогда, когда Земля начала остывать.

По материалам listverse.com

Как только человек обзавёлся разумом, он стал интересоваться тем, как всё устроено. Почему вода не переливается за край мира? Вращается ли Солнце вокруг Земли? Что находится внутри чёрных дыр?

Сократовское «Я знаю, что ничего не знаю» означает, что мы осознаём количество ещё неизведанного в этом мире. Мы прошли путь от мифов до квантовой физики, однако вопросов до сих пор больше, чем ответов, и они становятся лишь сложнее.

Космогонические мифы

Миф - первый способ, с помощью которого люди объясняли происхождение и устройство всего окружающего и своё собственное существование. Космогонические мифы рассказывают о том, как из хаоса или небытия появился мир. Сотворением вселенной в мифе занимаются божества. В зависимости от конкретной культуры получившаяся космология (представление об устройстве мира) различается. Например, небесная твердь могла казаться крышкой, скорлупой мирового яйца, створкой гигантской раковины или черепом великана.

Как правило, во всех этих историях присутствует разделение первоначального хаоса на небо и землю (верх и низ), создание оси (стержня мироздания), сотворение природных объектов и живых существ. Общие для разных народов базовые понятия называются архетипами.

О ранних стадиях эволюции Вселенной и происхождении химических элементов рассказывает в лекции «Постнауки» физик Александр Иванчик.

Мир как тело

Древний человек познавал мир с помощью своего тела, измерял расстояния шагами и локтями, много работал руками. Это нашло отражение в олицетворении природы (гром - результат ударов божьего молота, ветер - божество дует). Мир тоже ассоциировался с большим телом.

Например, в скандинавской мифологии мир был создан из тела великана Имира , глаза которого стали водоёмами, а волосы - лесами. В индуистской мифологии эту функцию взял на себя Пуруша , в китайской - Паньгу . Во всех случаях устройство видимого мира связывается с телом антропоморфного существа, великого предка или божества, приносящего себя в жертву, чтобы мир появился. Сам человек при этом - микрокосм, вселенная в миниатюре.

Великое древо

Ещё один архетипический сюжет, который часто появляется у разных народов - ось мира, мировая гора или же мировое древо . Например, ясень Иггдрасиль у скандинавов. Изображения дерева, в центре которого находится фигурка человека, встречались также у майя и ацтеков. В индуистских Ведах священное древо называлось Ашваттха, в тюркской мифологии - Байтерек. Мировое древо связывает нижний, средний и верхний миры, его корни находятся в подземных областях, а крона уходит в небеса.

Покатай меня, большая черепаха!

Мифологема плавающей в безбрежном океане мировой черепахи, на спине которой покоится Земля, встречается у народов Древней Индии и Древнего Китая, в преданиях коренного населения Северной Америки. В разных вариантах мифа о гигантских «поддерживающих животных» упоминаются слон, змея и кит.

Космологические представления греков

Греческие философы заложили астрономические представления, которыми мы пользуемся и сегодня. Разные философы их школы имели свою точку зрения на модель мироздания. В большинстве своём они придерживались геоцентрической системы мира.

Концепция предполагала, что в центре мира находится неподвижная Земля, вокруг которой обращаются Солнце, Луна и звёзды. При этом планеты вращаются вокруг Земли, образуя «Земную систему». Суточное вращение Земли Тихо Браге также отрицал.

Научная революция Просвещения

Географические открытия, морские путешествия, развитие механики и оптики сделали картину мира более сложной и полной. С XVII века началась «телескопическая эпоха»: человеку стало доступно наблюдение за небесными телами на новом уровне и открылся путь к более глубокому изучению космоса. С философской точки зрения мир мыслился как объективно познаваемый и механистичный.

Иоганн Кеплер и орбиты небесных тел

Ученик Тихо Браге Иоганн Кеплер, который придерживался коперниканской теории, открыл законы движения небесных тел. Вселенная, согласно его теории - это шар, внутри которого находится Солнечная система. Сформулировав три закона, которые называются теперь «законами Кеплера», он описал движение планет вокруг Солнца по орбитам и заменил круговые орбиты на эллипсы.

Открытия Галилео Галилея

Галилей защищал коперниканство, придерживаясь гелиоцентрической системы мира, а также настаивал на том, что Земля обладает суточным вращением (крутится вокруг своей оси). Это привело его к знаменитым разногласиям с Римской церковью, которая теорию Коперника не поддерживала.

Галилей построил собственный телескоп, обнаружил спутники Юпитера и объяснил свечение Луны отражённым Землёй солнечным светом.

Всё это было свидетельствами, что Земля имеет ту же природу, что и другие небесные тела, которые тоже обладают «лунами» и движутся. Даже Солнце оказалось не идеальным, что опровергало греческие представления о совершенстве горнего мира - на нём Галилей разглядел пятна.

Модель Вселенной Ньютона

Исаак Ньютон открыл закон всемирного тяготения, разработал единую систему земной и небесной механики и сформулировал законы динамики - эти открытия легли в основу классической физики. Ньютон доказал законы Кеплера с позиции гравитации, заявил, что Вселенная бесконечна и сформулировал свои представления о материи и плотности.

Его работа «Математические начала натуральной философии» 1687 года обобщила результаты исследований предшественников и заложила метод создания модели Вселенной с помощью математического анализа.

ХХ век: всё относительно

Качественным прорывом в представлении человека о мире в ХХ веке стали положения общей теории относительности (ОТО) , которые вывел в 1916 году Альберт Эйнштейн. Согласно теории Эйнштейна, пространство не является чем-то неизменным, время имеет начало и конец и может течь по-разному в разных условиях.

ОТО до сих пор наиболее влиятельная теория пространства, времени, движения и гравитации - то есть, всего, что составляет физическую реальность и принципы мира. Теория относительности утверждает, что пространство должно либо расширяться, либо сужаться. Так оказалось, что Вселенная динамична, а не стационарна.

Американский астроном Эдвин Хаббл доказал, что наша галактика Млечный Путь, в которой находится Солнечная система - лишь одна из сотен миллиардов других галактик Вселенной. Исследуя дальние галактики, он сделал вывод о том, что они разбегаются, удаляясь друг от друга, и предположил, что Вселенная расширяется.

Если исходить из концепции постоянного расширения Вселенной, выходит, когда-то она находилась в сжатом состоянии. Событие, которое обусловило переход от очень плотного состояния материи к расширению, получило название Большого Взрыва .

ХХI век: тёмная материя и Мультивселенная

Сегодня мы знаем, что Вселенная расширяется ускоренно: этому способствует давление «тёмной энергии», которая борется с силой тяготения. «Тёмная энергия», природа которой до сих пор не ясна, составляет основную массу Вселенной. Чёрные дыры представляют собой «гравитационные могилы», в которых исчезают вещество и излучение, и в которые, предположительно, превращаются погибшие звёзды.

Возраст Вселенной (время с начала расширения) предположительно оценивают в 13-15 миллиардов лет.

Мы осознали свою неуникальность - ведь вокруг столько звёзд и планет. Поэтому вопрос возникновения жизни на Земле современными учёными рассматривается в контексте того, почему вообще возникла Вселенная, где такое стало возможным.

Галактики, звёзды и вращающиеся вокруг них планеты, да и сами атомы существуют только потому, что толчок тёмной энергии в момент Большого взрыва оказался достаточным, чтобы Вселенная не свернулась снова, и в то же время таким, чтобы пространство не разлеталось слишком сильно. Вероятность такого очень мала, поэтому некоторые современные физики-теоретики предполагают, что существует множество параллельных Вселенных.

Физики-теоретики верят, что одни вселенные могут иметь 17 измерений, в других могут быть звёзды и планеты, подобные нашим, а некоторые могут состоять всего лишь из аморфного поля.

Алан Лайтманфизик

Впрочем, опровергнуть это с помощью эксперимента невозможно, поэтому другие учёные полагают, что концепцию Мультивселенной следует считать скорее философской.

Сегодняшние представления о Вселенной во многом связаны с нерешёнными проблемами современной физики. Квантовая механика, построения которой существенно отличаются от того, что говорит классическая механика, физические парадоксы и новые теории уверяют нас, что мир куда многообразнее, чем кажется, а результаты наблюдений во многом зависят от наблюдающего.

С помощью рентгенографическое исследования сделано великое открытие: подтверждено, что тело мумии принадлежит египетскоймумии 2500-летней давности, известной как «Тахема». Фото: Leon Neal/AFP/Getty Images

Пытливая человеческая мысль прошла нелегкий путь, чтобы предоставить миру великие открытия и изобретения в области химии, физики, физиологии и медицины за последние 100 лет со дня учреждения Нобелевского Фонда.

Это те великие открытия и изобретения, которые в действительности потрясли и изменили мир людей. Все великие открытия и изобретения имеют свою историю. Общечеловеческая история великих изобретений проходит путь от первых примитивных орудий труда до современных компьютеров; от лодок-каноэ до атомных ледоколов; от воздушных шаров до космических ракет и космических станций и так далее.

В начале ноября этого года сотрудники лондонского Музея науки опросили 50 тысяч человек. Участников попросили назвать великие открытия и изобретения современности, которые они считают наиболее выдающимися. 10 тысяч из них указали, что из всех великих открытий и изобретений именно рентген оказал наибольшее влияние на прошлое, настоящее и будущее человечества.

Рентген впервые позволил заглянуть внутрь объектов, не нарушив их структуры, и позволил медикам заглянуть в человеческое тело без проведения операции. Открытие и использование рентгеновского излучения опередило все имеющиеся достижения инженерной мысли.

Изобретатель

Изобретатель рентгена Вильгельм Конрад Рёнтген (Röntgen) (1845-1923), немецкий физик, с 1875 года профессор в Гогенгейме, в 1876 профессор физики в Страсбурге, с 1879 в Гиссене, с 1885 в Вюрцбурге, с 1899 в Мюнхене. Работы физика, главным образом, проводились в области соотношения между световыми и электрическими явлениями. В 1895 году Вильгельм Конрад открыл излучение, названное рентгеновским, исследовал его свойства. Рентге́н сделал некоторые открытия о свойствах кристаллов и магнетизма.

Все великие изобретения и открытия физика детально изложены в созданных учёным трудах. Рентге́н Вильгельм Конрад был первым лауреатом Нобелевской премии по физике, присуждённой ему в 1901 году «В знак признания необычайно важных заслуг перед наукой, выразившихся в открытии замечательных лучей», названных впоследствии в его честь. Это открытие действительно оказалось великим открытием века.

Открытие лучей

Главное открытие в своей жизни - икс-излучение (позже названное рентгеновским), Рентге́н Вильгельм Конрад сделал когда ему было уже 50 лет. Будучи руководителем физического отделения Вюрцбургского университета, он имел обыкновение допоздна засиживаться в лаборатории, когда его ассистенты уходили домой, Рентген продолжал работать.

Как обычно, однажды он включил ток в катодной трубке, плотно закрытой со всех сторон чёрной бумагой. Кристаллы платиноцианистого бария, лежавшие неподалёку, начали светиться зеленоватым светом. Учёный выключил ток - свечение кристаллов прекратилось. При повторной подаче напряжения на катодную трубку, свечение в кристаллах возобновилось.

В результате дальнейших исследований учёный пришёл к выводу, что из трубки исходит неизвестное излучение, названное им впоследствии икс-лучами. В этот момент и явилось миру великое открытие. Эксперименты Рентгена показали, что икс-лучи возникают в месте столкновения катодных лучей с преградой внутри катодной трубки.

Для проведения исследований учёный изобрёл трубку специальной конструкции, в которой антикатод был плоским, что обеспечивало интенсификацию потока икс-лучей. Благодаря этой трубке (она впоследствии будет названа рентгеновской) он изучил и описал основные свойства ранее неизвестного излучения, которое получило название «рентгеновское».

Физические свойства рентгеновских лучей

В результате исследований были сделаны открытия, и зафиксированы свойства рентгеновских лучей: икс-излучение способно проникать сквозь многие непрозрачные материалы, при этом икс-излучение не отражается и не преломляется. Если пропускать разряды электрического тока через достаточно разреженную трубку, то наблюдаются исходящие из трубки особые лучи.

Они, во-первых, вызывают флуоресценцию (свечение) платиново-синеродистого бария, во-вторых, беспрепятственно проходят через картон, бумагу, толстые слои дерева (толщиной 2-3 см) и алюминий (толщиной до 15 мм), в-третьих, лучи задерживаются металлами, костями и т. д. Лучи не обладают способностью отражаться, преломляться, интерферировать, не испытывают дифракции, не подвергаются двойному лучепреломлению и не могут быть поляризованы.

Рентгеном были сделаны первые снимки с помощью рентгеновского излучения. Так же было сделано ещё одно открытие, что рентгеновское излучение ионизирует окружающий воздух и засвечивает фото-пластины.

Использование изобретения во всём мире

Для использования открытых рентгеновских лучей были изобретены различные приборы. Для фотографирования частей человеческого тела при помощи рентгеновских лучей был изобретён рентгеновский аппарат, что нашло применение в хирургии: мягкие ткани тела человека пропускают лучи, а кости, а равно и металлы, кольцо, например, их задерживают. Позже такое фотографирование стало называться рентгеноскопией, что тоже являлось одним из великих изобретений века.

Это великое открытие и изобретения немецкого учёного очень сильно повлияло на развитие науки. Эксперименты и исследования с использованием рентгеновских лучей помогли получить новые сведения о строении вещества, которые вместе с другими открытиями того времени заставили пересмотреть целый ряд положений классической физики. Через короткий промежуток времени рентгеновские трубки нашли применение не только в медицине, но и в различных областях техники.

К Рентгену не раз обращались представители промышленных фирм с предложениями о выгодной покупке прав на использование изобретения. Но Вильгельм отказался запатентовать открытие, так как не считал свои исследования источником дохода.

К 1919 году рентгеновские трубки получили широкое распространение и применялись во многих странах. Благодаря им, появились новые направления науки и техники -рентгенология, рентгенодиагностика, рентгенометрия, рентгеноструктурный анализ и др. Рентген используется во многих сферах науки. С помощью новейших изобретений и аппаратов производятся всё новые и новые открытия в медицине, космосе, археологии и других областях.

Какова предпосылка изобретения рентгеновских лучей?

В настоящее время современная наука делает ряд открытий в области исследований человеческого тела. Всем известно, что в древние времена все великие медики обладали экстрасенсорными способностями. Из исторических записей известно, что в Китае были медики такие, как Сунь Сымяо, Хуа То, Ли Шичжэнь, Бянь Цуэ - все они обладали экстрасенсорными способностями, то есть могли видеть внутренности человека без рентгена и, на основе увиденного, поставить диагноз.

Таким образом, эффект лечения был намного лучше, чем в настоящее время. Чем могли отличаться эти медики древних времён от обычных людей? На основании открытия, сделанного наукой можно сделать заключение, что для просвечивания тела нужен свет. Значит, эти медики обладали такой энергией, которая использовалась ими как рентгеновские лучи для просвечивания тела больного. Откуда же взялась у этих древних медиков такая энергия, подобная электричеству?

Когда в 90-х годах в Китае возрождалась практика цигун, многие мастера цигун были обследованы. Исследования показали, что в их теле существует энергия, которой нет у обычных людей. Откуда же появилась эта энергия у мастеров цигун? Эта энергия появилась в результате занятий цигун, то есть в результате самосовершенствования.

Наука пришла на помощь человеку – великое изобретение человечества рентген, позволяет людям компенсировать утраченную способность проницательного видения вещей. Рентген делает то, что человек имел от природы, но со временем потерял. Чтобы иметь эти способности, человеку необходимо встать на путь совершенствования своей души, возрасти нравственно. Наука может сделать великое открытие, при этом подтвердив то, что человек имел от природы.

Весной 2009 года в итальянском городе Флоренция проходило празднование юбилея одного из величайших открытий мира. 400 лет назад Галилео Галилей изобрел первый в мире телескоп. Это изобретение изменило представление человечества о Вселенной.

Галилей родился 15 февраля 1564 в городе Пиза. Он занимался философией, математикой, физикой, механикой, астрономией, увлекался поэзией. Ученый оказал значительное влияние на науку своего времени, сделал многочисленные научные открытия в этих областях.

Наиболее плодотворный период научной деятельности Галилея был, когда он переехал в город Падуя.

Здесь Галилей очень скоро стал самым знаменитым профессором в городе. Открытия и изобретения Галилея заинтересовывали многих: студенты с интересом приходили на его лекции послушать об идеях профессора, венецианское правительство непрестанно поручало Галилею разработку разного рода технических устройств, с ним активно переписываются молодой Кеплер и другие научные деятели того времени. В эти годы он написал трактат «Механика», который вызвал некоторый интерес и был переиздан во французском переводе. В ранних работах, а также в переписке, в которой Галилей описывал все свои открытия и изобретения, он дал первый набросок новой общей теории падения тел и движения маятника. Галилей является основателем экспериментальной физики.

Великие открытия и изобретение, изменившие мир. Орбитальный телескоп "Хаббл" Фото: NASA/Getty Images Поводом к новому этапу в научных исследованиях Галилея послужило открытие в 1604 году новой звезды, называемой сейчас сверхновой звездой Кеплера (SN 1604).

Это великое открытие пробудило всеобщий интерес к астрономии, и Галилей выступает с циклом частных лекций. Узнав об изобретении зрительной трубы в Голландии, Галилей в 1609 году конструирует собственноручно первый телескоп и направляет его в небо. Галилей первым использовал телескоп для наблюдения за планетами и другими небесными телами, сделал ряд выдающихся астрономических открытий.

Великие открытия и изобретение, изменившие мир. Орбитальный телескоп "Хаббл" Фото: NASA/Getty Images Впервые Галилей опробовал свое изобретение во Флоренции.

Оно состояло из куска дерева длиной в один метр и двух кусочков стекла. Позднее ученый усовершенствовал телескоп, увеличение которого стало 30-кратным. Галилей рассмотрел поверхность Луны и сделал открытие, что на Луне имеются кратеры и хребты. С помощью телескопа Галилей открыл спутники Юпитера и Млечный путь. После чего написал книгу "Звездный вестник", которая разошлась тиражом в 550 экземпляров.

В настоящее время астрономы, используя американский орбитальный телескоп «Хаббл» (новейшее изобретение века), сумели открыть галактики, образовавшиеся на крайне раннем этапе развития Вселенной. Британские ученые вели наблюдения за тридцатью пятью чрезвычайно отдаленными галактиками. Это великое открытие в астрономии утверждает, что речь идет о галактиках, сформировавшихся спустя всего 600 млн. лет после Большого взрыва.

Самым последним изобретением в области изобретений астрономических телескопов является космический инфракрасный телескоп. Проект за 735 миллионов долларов будет четвертым и заключительным элементом орбитальных "Великих Обсерваторий НАСА", таких как Космический телескоп «Хаббл», Обсерватория Гамма – лучей «Комптон» и Космическая рентгеновская обсерватория «Чандра».

Надо отметить еще следующее, что на скалах , которые были одеты в галифе, на голове – шляпа. В руках некоторые держали телескоп. Учёные, которые исследуют рисунки на скалах, установили, что этим рисункам 30 с лишним тысяч лет. Такое открытие сделали учёные, занимающиеся исследованием наскальных рисунков. Значит, Галилей не был первым человеком, кто изобрёл телескоп. А, возможно, что эти рисунки сделали люди, жившие до нашей нынешней цивилизации. Но это уже совсем другое открытие.