Приведение системы пар сил к простейшему виду или сложение пар сил. Приведение системы сил на плоскости к простейшему виду Уравнения равновесия различных систем сил

Случай I.

Если главный вектор системы сил равен нулю и ее главный момент относительно центра приведения равен нулю, то силы взаимно уравновешиваются.

Случай II.

Если главный вектор системы сил равен нулю, а ее главный момент относительно центра приведения не равен нулю, то силы приводятся к паре сил. Момент этой пары сил равен главному моменту системы сил относительно центра приведения.

В этом случае главные моменты системы сил относительно всех точек пространства геометрически равны.

Случай III.

Если главный вектор системы сил не равен нулю, а ее главный момент относительно центра приведения равен нулю, то силы приводятся к равнодействующей , линия действия которой проходит через центр привидения.

Случай IV. и .

Если главный момент системы сил относительно центра приведения перпендикулярен к главному вектору, то силы приводятся к равнодействующей , линия действия которой не проходит через центр приведения (рис. 145).

Случай V. и .

Если главный момент системы сил относительно центра приведения не перпендикулярен к главному вектору, то силы приводятся к двум скрещивающимся силам или к силовому винту (динаме), т.е. к совокупности силы и пары сил, плоскость которой перпендикулярна к силе.

Приведение к двум скрещивающимся силам (рис. 147):


Уравнения равновесия различных систем сил

Для сил, произвольно расположенных в пространстве, соответствуют два условия равновесия:

Модули главного момента и главного вектора для рассматриваемой системы сил определяются по формулам:

Условия выполняются только при соответствующих им шести основных уравнения равновесия сил, расположенных произвольно в пространстве:

Первые три уравнения называют уравнениями моментов сил относительно осей координат, а последние три - уравнениями проекций сил на оси.


Формы уравнений равновесия плоской системы сил

Для сил, произвольно расположенных на плоскости, имеются два условия равновесия:

Два условия равновесия сил, произвольно расположенных на плоскости, можно выразить в виде системы трех уравнений:

Эти уравнения называются основными уравнениями равновесия плоской системы сил. Центр моментов и направление осей координат для этой системы уравнений можно выбирать произвольно.

Существует и две другие системы трех уравнений системы сил.

При этом в системе ось u не должна быть перпендикулярна прямой проходящей через точки A и B.

Так как главные моменты системы сил относительно двух центров равны нулю, то рассматриваемая система сил не приводится к паре сил. Проекция равнодействующей на любую ось равна сумме проекций составляющих сил, т.е. следовательно, предполагаемая равнодействующая Таким образом, система сил не приводится ни к паре сил, ни к равнодействующей, а, следовательно, уравновешивается.

где точки A, B, C не лежат на одной прямой. В этом случае силы не приводятся к паре сил, так как главные моменты сил относительно трех центров равны нулю. Силы не приводятся и к равнодействующей, так как если она существует, то линия ее действия не может пройти через три точки не лежащие на одной прямой. Таким образом, система сил не приводится ни к паре сил, ни к равнодействующей, а, следовательно, уравновешивается.


Центр параллельных сил

При сложении двух параллельных сил две параллельные приводятся к одной силе - равнодействующей, линия действия которой направлена параллельно линиям действия сил. Равнодействующая приложена в точке делящей прямую, на расстояния обратно пропорциональные величинам сил.

Поскольку силу можно переносить по линии ее действия, то точка приложения равнодействующей не определена. Если силы повернуть на один и тот же угол и вновь произвести сложение сил, то получим другое направление линии действия равнодействующей. Точка пересечения этих двух линий равнодействующих может рассматриваться как точка приложения равнодействующей, не изменяющая своего положения при повороте всех сил одновременно на один и тот же угол. Такая точка называется центром параллельных сил.


Как показано в § 12, любая приводится в общем случае к силе, равной главному вектору R и приложенной в произвольном центре О, и к паре с моментом, равным главному моменту (см. рис. 40, б). Найдем, к какому простейшему виду может приводиться пространственная система сил, не находящаяся в равновесии. Результат зависит от значений, которые у этой системы имеют величины R и

1. Если для данной системы сил , а то она приводится к паре сил, момент которой равен и может быть вычислен по формулам (50). В этом случае, как было показано в § 12, значение от выбора центра О не зависит.

2. Если для данной системы сил то она приводится к равнодействующей, равной R, линия действия которой проходит через центр О. Значение R можно найти по формулам (49).

3. Если для данной системы сил но то эта система также приводится к равнодействующей, равной R, но не проходящей через центр О.

Действительно, при пара, изображаемая вектором и сила R лежат в одной плоскости (рис. 91).

Тогда, выбрав силы пары равными по модулю R и располагая их так, как показано на рис. 91, получим, что силы взаимно уравновесятся, и система заменится одной равнодействующей линия действия которой проходит через точку О (см, § 15, п. 2, б). Расстояние ) определяется при этом по формуле (28), где

Легко убедиться, что рассмотренный случай будет, в частности, всегда иметь место для любой системы параллельных сил или сил, лежащих в одной плоскости, если главный вектор этой системы Если для данной системы сил и при этом вектор параллелен R (рис. 92, а), то это означает, что система сил приводится к совокупности силы R и пары Р, Р, лежащей в плоскости, перпендикулярной силе (рис. 92, б). Такая совокупность силы и пары называется динамическим винтом, а прямая, вдоль которой направлен вектор R, осью винта. Дальнейшее упрощение этой системы сил невозможно. В самом деле, если за центр приведения принять любую другую точку С (рис. 92, а), то вектор можно перенести в точку С как свободный, а при переносе силы R в точку С (см. § 11) добавится еще одна пара с моментом перпендикулярным вектору R, а следовательно, и . В итоге момент результирующей пары численно будет больше таким образом, момент результирующей пары имеет в данном случае при приведении к центру О наименьшее значение. К одной силе (равнодействующей) или к одной паре данную систему сил привести нельзя.

Если одну из сил пары, например Р, сложить с силой R, то рассматриваемую систему сил можно еще заменить двумя скрещивающимися, т. е. не лежащими в одной плоскости силами Q и (рис. 93). Так как полученная система сил эквивалентна динамическому винту, то она также не имеет равнодействующей.

5. Если для данной системы сил и при этом векторы и R не перпендикулярны друг другу и не параллельны, то такая система сил тоже приводится к динамическому винту, но ось винта не будет проходить через центр О.

Чтобы доказать это, разложим вектор на составляющие: направленную вдоль R, и перпендикулярную R (рис. 94). При этом , где - векторами и R. Пару, изображаемую вектором и силу R можно, как в случае, показанном на рис. 91, заменить одной силой R, приложенной в точке О, Тогда данная система сил заменится силой и парой смоментом параллельным причем вектор как свободный, можно тоже приложить в точке О. В результате действительно получится динамический винт, но с осью, проходящей через точку

Основная теорема статики о приведении произвольной системы сил к заданному центру: Любая плоская система сил эквивалентна одной силе, равной главному вектору системы , приложенному в некоторой точке (центре приведения) и паре сил, момент которой равен главному моменту сил системы относительно центра приведения .

Доказательство теоремы выполняется в такой последовательности: выбирают некоторую точку (например, точку О )в качестве центра приведения и переносят каждую силу в эту точку, добавляя, согласно теореме о параллельном переносе силы, соответствующие пары сил . В результате этого получают систему сходящихся сил , приложенных в точке О , где , и систему добавленных пар сил , моменты которых . Затем заменяют систему сходящихся сил равнодействующей, равной главному вектору системы , а систему пар сил – одной парой сил с моментом, равным главному моменту системы относительно центра приведения. В результате получают, что ~ . Следовательно, теорема доказана.

Случаи приведения пространственной системы сил к простейшему виду:

1 , а – система сводится к одной паре сил с моментом, равным главному моменту системы, и значение главного момента системы от выбора центра приведения не зависит.

2 , а – система сил приводится к равнодействующей, равной главному вектору системы, линия действия которой проходит через центр О приведения.

3 , и –такая система сил сводится к одной равнодействующей , равной главному вектору системы, линия действия которой смещена от предыдущего центра приведения на расстояние .

4 Если главный вектор и главный момент , то система сил будет уравновешенной, т.е. ~0.

2.1.5 Условия равновесия плоской системы сил

Необходимые и достаточные условия равновесия любой плоской системы сил определяются уравнениями:

Величина главного вектора плоской системы сил определяется зависимостями: , а главного момента – зависимостью .

Главный вектор будет равняться нулю только тогда, когда одновременно . Следовательно, условия равновесия выполняются при выполнении таких аналитических уравнений:

Эти уравнения являются основной (первой ) формой аналитических условий равновесия произвольной плоской системы сил, которые формулируются так: для равновесия произвольной плоской системы сил необходимо и достаточно, чтобы суммы проекций всех сил на каждую из двух координатных осей и алгебраическая сумма моментов этих сил относительно любой точки на плоскости действия сил равнялись нулю .

Отметим, что число уравнений равновесия произвольной плоской системы сил в общем случае равняется трём. Они могут быть представлены в разной форме.


Существуют еще две формы уравнений равновесия произвольной плоской системы сил, выполнение которых выражает условия равновесия ().

Вторая форма аналитических условий равновесия предусматривает: для равновесия произвольной плоской системы сил необходимо и достаточно, чтобы суммы моментов всех сил относительно двух точек и сумма проекций этих сил на ось, неперпендикулярную к прямой, проведенной через эти точки равнялись нулю:

(линия АВ неперпендикулярна оси Ох )

Сформулируем третью форму аналитических условий равновесия рассматриваемой системы сил: для равновесия произвольной плоской системы сил необходимо и достаточно, чтобы суммы моментов сил системы относительно любых трех точек, не лежащих на одной прямой, равнялись нулю :

В случае плоской системы параллельных сил, можно направить ось Оу параллельно силам системы. Тогда проекции каждой из сил системы на ось Ох будут равняться нулю. В итоге для плоской системы параллельных сил останутся две формы условий равновесия.

Для равновесия плоской системы параллельных сил необходимо и достаточно, чтобы сумма проекций всех сил на параллельную им ось и сумма моментов всех сил относительно любой точки равнялись нулю:

Эта первая форма аналитических условий равновесия для плоской системы параллельных сил вытекает из уравнений ().

Вторую форму условий равновесия плоской системы параллельных сил получим из уравнений ().

Для равновесия плоской системы параллельных сил необходимо и достаточно, чтобы сумма моментов всех сил системы относительно двух точек, которые не лежат на прямой, параллельной силам, равнялись нулю:


Статика твердого тела:
Пространственная система сил
§ 7. Приведение системы сил к простейшему виду

Задачи на тему

7.1 К вершинам куба приложены по направлениям ребер силы, как указано на рисунке. Каким условиям должны удовлетворять модули сил F1, F2, F3, F4, F5 и F6, чтобы они находились в равновесии?
РЕШЕНИЕ

7.2 По трем непересекающимся и непараллельным ребрам прямоугольного параллелепипеда действуют три равные по модулю силы P. Какое соотношение должно существовать между ребрами a, b и c, чтобы эта система приводилась к одной равнодействующей?
РЕШЕНИЕ

7.3 К четырем вершинам A, H, B и D куба приложены четыре равные по модулю силы: P1=P2=P3=P4=P, причем сила P1 направлена по AC, P2 по HF, P3 по BE и P4 по DG. Привести эту систему к простейшему виду.
РЕШЕНИЕ

7.4 К правильному тетраэдру ABCD, ребра которого равны a, приложены силы: F1 по ребру AB, F2 по ребру CD и F3 в точке E середине ребра BD. Величины сил F1 и F2 какие угодно, а проекции силы F3 на оси x, y и z равны +F25√3/6; -F2/2; -F2√(2/3). Приводится ли эта система сил к одной равнодействующей? Если приводится, то найти координаты x и z точки пересечения линии действия равнодействующей с плоскостью Oxz.
РЕШЕНИЕ

7.5 К вершинам куба, ребра которого имеют длину 5 см, приложены, как указано на рисунке, шесть равных по модулю сил, по 2 Н каждая. Привести эту систему к простейшему виду.
РЕШЕНИЕ

7.6 Систему сил: P1=8 Н, направленную по Oz, и P2=12 Н, направленную параллельно Oy, как указано на рисунке, где OA=1,3 м, привести к каноническому виду, определив величину главного вектора V всех этих сил и величину их главного момента M относительно произвольной точки, взятой на центральной винтовой оси. Найти углы α, β и γ, составляемые центральной винтовой осью с координатными осями, а также координаты x и y точки встречи ее с плоскостью Oxy.
РЕШЕНИЕ

7.7 Три силы P1, P2 и P3 лежат в координатных плоскостях и параллельны осям координат, но могут быть направлены как в ту, так и в другую сторону. Точки их приложения A, B и C находятся на заданных расстояниях a, b и c от начала координат. Какому условию должны удовлетворять величины этих сил, чтобы они приводились к одной равнодействующей? Какому условию должны удовлетворять величины этих сил, чтобы существовала центральная винтовая ось, проходящая через начало координат?
РЕШЕНИЕ

7.8 К правильному тетраэдру ABCD с ребрами, равными a, приложена сила F1 по ребру AB и сила F2 по ребру CD. Найти координаты x и y точки пересечения центральной винтовой оси с плоскостью Oxy.
РЕШЕНИЕ

7.9 По ребрам куба, равным a, действуют двенадцать равных по модулю сил P, как указано на рисунке. Привести эту систему сил к каноническому виду и определить координаты x и y точки пересечения центральной винтовой оси с плоскостью Oxy.
РЕШЕНИЕ

7.10 По ребрам прямоугольного параллелепипеда, соответственно равным 10 м, 4 м и 5 м, действуют шесть сил, указанных на рисунке: P1=4 Н, P2=6 Н, P3=3 Н, P4=2 Н, P5=6 Н, P6=8 Н. Привести эту систему сил к каноническому виду и определить координаты x и y точки пересечения центральной винтовой оси с плоскостью Oxy.
РЕШЕНИЕ

7.11 Равнодействующие P=8000 кН и F=5200 кН сил давления воды на плотину приложены в средней вертикальной плоскости перпендикулярно соответствующим граням на расстоянии H=4 м и h=2,4 м от основания. Сила веса G1=12000 кН прямоугольной части плотины приложена в ее центре, а сила веса G2=6000 кН треугольной части на расстоянии одной трети длины нижнего основания треугольного сечения от вертикальной грани этого сечения. Ширина плотины в основании b=10 м, в верхней части a=5 м; tg α=5/12. Определить равнодействующую распределенных сил реакции грунта, на котором установлена плотина.
РЕШЕНИЕ

7.12 Вес радиомачты с бетонным основанием G=140 кН. К мачте приложены сила натяжения антенны F=20 кН и равнодействующая сил давления ветра P=50 кН; обе силы горизонтальны и расположены во взаимно перпендикулярных плоскостях; H=15 м, h=6 м. Определить результирующую реакцию грунта, в котором уложено основание мачты.

Плоская система сил тоже приводится к силе, равной и приложенной в произвольно выбранном центре О, и паре с моментом

при этом вектор можно определить или геометрически построением силового многоугольника (см. п. 4), или аналитически. Таким образом, для плоской системы сил

R x =F kx , R y =F ky ,

где все моменты в последнем равенстве алгебраические и сумма тоже алгебраическая.

Найдем, к какому простейшему виду может приводиться данная плоская система сил, не находящаяся в равновесии. Результат зависит от значений R и М O .

  • 1. Если для данной системы сил R=0, a M O ?0, то она приводится к одной паре с моментом М O , значение которого не зависит от выбора центра О.
  • 2. Если для данной системы сил R?0, то она приводится к одной силе, т. е. к равнодействующей. При этом возможны два случая:
    • а) R?0, М O =0. В этом случае система, что сразу видно, приводится к равнодействующей R, проходящей через центр О;
    • б) R?0, М O ?0. В этом случае пару с моментом М O можно изобразить двумя силами R" и R", беря R"=R, a R"= - R. При этом, если d=OC - плечо пары, то должно быть Rd=|M O |.

Отбросив теперь силы R и R", как уравновешенные, найдем, что вся система сил заменяется равнодействующей R"=R, проходящей через точку С. Положение точки С определяется двумя условиями: 1) расстояние OC=d () должно удовлетворять равенству Rd=|M O |; 2) знак момента относительно центра О силы R", приложенной в точке С, т. е. знак m O (R") должен совпадать со знаком М O .