Найти наименьшее значение функции f х х. Как решать задачи B15 без производных. Асимптоты графика функции. Исследование функции на асимптоты

С помощью данного сервиса можно найти наибольшее и наименьшее значение функции одной переменной f(x) с оформлением решения в Word . Если же задана функция f(x,y) , следовательно, необходимо найти экстремум функции двух переменных . Также можно найти интервалы возрастания и убывания функции .

Правила ввода функций :

Необходимое условие экстремума функции одной переменной Уравнение f" 0 (x *) = 0 - это необходимое условие экстремума функции одной переменной, т.е. в точке x * первая производная функции должна обращаться в нуль. Оно выделяет стационарные точки x с, в которых функция не возрастает и не убывает. Достаточное условие экстремума функции одной переменной Пусть f 0 (x) дважды дифференцируемая по x , принадлежащему множеству D . Если в точке x * выполняется условие:

F" 0 (x *) = 0
f"" 0 (x *) > 0

То точка x * является точкой локального (глобального) минимума функции.

Если в точке x * выполняется условие:

F" 0 (x *) = 0
f"" 0 (x *) < 0

То точка x * - локальный (глобальный) максимум.

Пример №1 . Найти наибольшее и наименьшее значения функции: на отрезке .
Решение.

Критическая точка одна x 1 = 2 (f’(x)=0). Эта точка принадлежит отрезку . (Точка x=0 не является критической, так как 0∉).
Вычисляем значения функции на концах отрезка и в критической точке.
f(1)=9, f(2)= 5 / 2 , f(3)=3 8 / 81
Ответ: f min = 5 / 2 при x=2; f max =9 при x=1

Пример №2 . С помощью производных высших порядков найти экстремум функции y=x-2sin(x) .
Решение.
Находим производную функции: y’=1-2cos(x) . Найдем критические точки: 1-cos(x)=2, cos(x)=½, x=± π / 3 +2πk, k∈Z. Находим y’’=2sin(x), вычисляем , значит x= π / 3 +2πk, k∈Z – точки минимума функции; , значит x=- π / 3 +2πk, k∈Z – точки максимума функции.

Пример №3 . Исследовать на экстремум фцнкцию в окрестностях точки x=0.
Решение. Здесь необходимо найти экстремумы функции. Если экстремум x=0 , то выяснить его тип (минимум или максимум). Если среди найденных точек нет x = 0, то вычислить значение функции f(x=0).
Следует обратить внимание, что когда производная с каждой стороны от данной точки не меняет своего знака, не исчерпываются возможные ситуации даже для дифференцируемых функций: может случиться, что для сколь угодно малой окрестности по одну из сторон от точки x 0 или по обе стороны производная меняет знак. В этих точках приходится применять другие методы для исследования функций на экстремум.

Пример №4 . Разбить число 49 на два слагаемых, произведение которых будет наибольшим.
Решение. Обозначим x - первое слагаемое. Тогда (49-x) - второе слагаемое.
Произведение будет максимальным: x·(49-x) → max

Пусть функция у = f (х) непрерывна на отрезке [a, b ]. Как известно, такая функция на этом отрезке достигает наибольшего и наименьшего значений. Эти значения функция может принять либо во внутренней точке отрезка [a, b ], либо на границе отрезка.

Для нахождения наибольшего и наименьшего значений функции на отрезке [a, b ] необходимо:

1)найти критические точки функции в интервале (a, b );

2)вычислить значения функции в найденных критических точках;

3) вычислить значения функции на концах отрезка, то есть при x = а и х = b ;

4)из всех вычисленных значений функции выбрать наибольшее и наименьшее.

Пример. Найти наибольшее и наименьшее значения функции

на отрезке .

Находим критические точки:

Эти точки лежат внутри отрезка ; y (1) = ‒ 3; y (2) = ‒ 4; y (0) = ‒ 8; y (3) = 1;

в точке x = 3 и в точкеx = 0.

Исследование функции на выпуклость и точку перегиба.

Функция y = f (x ) называется выпуклойвверх на промежутке (a , b ) , если ее график лежит под касательной, проведенной в любой точке этого промежутка, и называется выпуклой вниз (вогнутой) , если ее график лежит над касательной.

Точка, при переходе через которую выпуклость сменяется вогнутостью или наоборот, называется точкой перегиба .

Алгоритм исследования на выпуклость и точку перегиба:

1. Найдеми критические точки второго рода, то есть точки в которых вторая производная равна нулю или не существует.

2. Нанести критические точки на числовую прямую, разбивая ее на промежутки. Найти знак второй производной на каждом промежутке; если , то функция выпуклая вверх, если, то функция выпуклая вниз.

3. Если при переходе через критическую точку второго рода поменяет знак и в этой точке вторая производная равна нулю, то эта точка ‒ абсцисса точки перегиба. Найти ее ординату.

Асимптоты графика функции. Исследование функции на асимптоты.

Определение. Асимптотой графика функции называется прямая , обладающая тем свойством, что расстояние от любой точки графика до этой прямой стремится к нулю при неограниченном удалении точки графика от начала координат.

Существуют три вида асимптот: вертикальные, горизонтальные и наклонные.

Определение. Прямая называетсявертикальной асимптотой графика функции у = f (х) , если хотя бы один из односторонних пределов функции в этой точке равен бесконечности, то есть

где ‒ точка разрыва функции, то естьне принадлежит области определения.

Пример.

D (y ) = (‒ ∞; 2) (2; + ∞)

x = 2 ‒ точка разрыва.

Определение. Прямая у = A называется горизонтальной асимптотой графика функции у = f(х) при , если

Пример.

x

y

Определение. Прямая у = k х + b (k ≠ 0) называется наклонной асимптотой графика функции у = f (х) при , где

Общая схема исследования функций и построения графиков.

Алгоритм исследования функции у = f (х) :

1. Найти область определения функцииD (y ).

2. Найти (если это можно) точки пересечения графика с осями координат (при x = 0 и при y = 0).

3. Исследовать на четность и нечетность функции(y (x ) = y (x ) четность; y (x ) = y (x ) нечетность).

4. Найти асимптоты графика функции.

5. Найти интервалы монотонности функции.

6. Найти экстремумы функции.

7. Найти интервалы выпуклости (вогнутости) и точки перегиба графика функции.

8. На основании проведенных исследований построить график функции.

Пример. Исследовать функцию и построить ее график.

1) D (y ) =

x = 4 ‒ точка разрыва.

2) При x = 0,

(0; ‒ 5) ‒ точка пересечения с oy .

При y = 0,

3) y (x )= функция общего вида (ни четная, ни нечетная).

4) Исследуем на асимптоты.

а) вертикальные

б) горизонтальные

в) найдем наклонные асимптоты где

‒уравнение наклонной асимптоты

5) В данном уравнении не требуется найти интервалы монотонности функции.

6)

Эти критические точки разбивают всю область определения функции на интервале (˗∞; ˗2), (˗2; 4), (4; 10)и (10; +∞). Полученные результаты удобно представить в виде следующей таблицы:

нет экстр.

Из таблицы видно, что точках = ‒2‒точка максимума, в точкех = 4‒нет экстремума, х = 10 ‒точка минимума.

Подставим значение (‒ 3) в уравнение:

9 + 24 ‒ 20 > 0

25 ‒ 40 ‒ 20 < 0

121 ‒ 88 ‒ 20 > 0

Максимум этой функции равен

(‒ 2; ‒ 4) ‒ экстремум максимальный.

Минимум этой функции равен

(10; 20) ‒ экстремум минимальный.

7) исследуем на выпуклость и точку перегиба графика функции



С практической точки зрения наибольший интерес представляет использование производной для нахождения наибольшего и наименьшего значения функции. С чем это связано? Максимизация прибыли, минимизация издержек, определение оптимальной загрузки оборудования... Другими словами, во многих сферах жизни приходится решать задачи оптимизации каких-либо параметров. А это и есть задачи на нахождение наибольшего и наименьшего значения функции.

Следует отметить, что наибольшее и наименьшее значение функции обычно ищется на некотором интервале X , который является или всей областью определения функции или частью области определения. Сам интервал X может быть отрезком , открытым интервалом , бесконечным промежутком .

В этой статье мы будем говорить о нахождении наибольшего и наименьшего значений явно заданной функции одной переменной y=f(x) .

Навигация по странице.

Наибольшее и наименьшее значение функции - определения, иллюстрации.

Кратко остановимся на основных определениях.

Наибольшим значением функции , что для любого справедливо неравенство .

Наименьшим значением функции y=f(x) на промежутке X называют такое значение , что для любого справедливо неравенство .

Эти определения интуитивно понятны: наибольшее (наименьшее) значение функции – это самое большое (маленькое) принимаемое значение на рассматриваемом интервале при абсциссе .

Стационарные точки – это значения аргумента, при которых производная функции обращается в ноль.

Для чего нам стационарные точки при нахождении наибольшего и наименьшего значений? Ответ на этот вопрос дает теорема Ферма. Из этой теоремы следует, что если дифференцируемая функция имеет экстремум (локальный минимум или локальный максимум) в некоторой точке, то эта точка является стационарной. Таким образом, функция часто принимает свое наибольшее (наименьшее) значение на промежутке X в одной из стационарных точек из этого промежутка.

Также часто наибольшее и наименьшее значение функция может принимать в точках, в которых не существует первая производная этой функции, а сама функция определена.

Сразу ответим на один из самых распространенных вопросов по этой теме:"Всегда ли можно определить наибольшее (наименьшее) значение функции"? Нет, не всегда. Иногда границы промежутка X совпадают с границами области определения функции или интервал X бесконечен. А некоторые функции на бесконечности и на границах области определения могут принимать как бесконечно большие так и бесконечно малые значения. В этих случаях ничего нельзя сказать о наибольшем и наименьшем значении функции.

Для наглядности дадим графическую иллюстрацию. Посмотрите на рисунки – и многое прояснится.

На отрезке


На первом рисунке функция принимает наибольшее (max y ) и наименьшее (min y ) значения в стационарных точках, находящихся внутри отрезка [-6;6] .

Рассмотрим случай, изображенный на втором рисунке. Изменим отрезок на . В этом примере наименьшее значение функции достигается в стационарной точке, а наибольшее - в точке с абсциссой, соответствующей правой границе интервала.

На рисунке №3 граничные точки отрезка [-3;2] являются абсциссами точек, соответствующих наибольшему и наименьшему значению функции.

На открытом интервале


На четвертом рисунке функция принимает наибольшее (max y ) и наименьшее (min y ) значения в стационарных точках, находящихся внутри открытого интервала (-6;6) .

На интервале , о наибольшем значении никаких выводов сделать нельзя.

На бесконечности


В примере, представленном на седьмом рисунке, функция принимает наибольшее значение (max y ) в стационарной точке с абсциссой x=1 , а наименьшее значение (min y ) достигается на правой границе интервала. На минус бесконечности значения функции асимптотически приближаются к y=3 .

На интервале функция не достигает ни наименьшего, ни наибольшего значения. При стремлении к x=2 справа значения функции стремятся к минус бесконечности (прямая x=2 является вертикальной асимптотой), а при стремлении абсциссы к плюс бесконечности, значения функции асимптотически приближаются к y=3 . Графическая иллюстрация этого примера приведена на рисунке №8.

Алгоритм нахождения наибольшего и наименьшего значения непрерывной функции на отрезке .

Запишем алгоритм, позволяющий находить наибольшее и наименьшее значение функции на отрезке.

  • Находим область определения функции и проверяем, содержится ли в ней весь отрезок .
  • Находим все точки, в которых не существует первая производная и которые содержатся в отрезке (обычно такие точки встечаются у функций с аргументом под знаком модуля и у степенных функций с дробно-рациональным показателем). Если таких точек нет, то переходим к следующему пункту.
  • Определяем все стационарные точки, попадающие в отрезок . Для этого, приравниваем ее к нулю, решаем полученное уравнение и выбираем подходящие корни. Если стационарных точек нет или ни одна из них не попадает в отрезок, то переходим к следующему пункту.
  • Вычисляем значения функции в отобранных стационарных точках (если такие имеются), в точках, в которых не существует первая производная (если такие имеются), а также при x=a и x=b .
  • Из полученных значений функции выбираем наибольшее и наименьшее - они и будут искомыми наибольшим и наименьшим значениями функции соответственно.
  • Разберем алгоритм при решении примера на нахождение наибольшего и наименьшего значения функции на отрезке.

    Пример.

    Найти наибольшее и наименьшее значение функции

    • на отрезке ;
    • на отрезке [-4;-1] .

    Решение.

    Областью определения функции является все множество действительных чисел, за исключением нуля, то есть . Оба отрезка попадают в область определения.

    Находим производную функции по :

    Очевидно, производная функции существует во всех точках отрезков и [-4;-1] .

    Стационарные точки определим из уравнения . Единственным действительным корнем является x=2 . Эта стационарная точка попадает в первый отрезок .

    Для первого случая вычисляем значения функции на концах отрезка и в стационарной точке, то есть при x=1 , x=2 и x=4 :

    Следовательно, наибольшее значение функции достигается при x=1 , а наименьшее значение – при x=2 .

    Для второго случая вычисляем значения функции лишь на концах отрезка [-4;-1] (так как он не содержит ни одной стационарной точки):

    Решение.

    Начнем с области определения функции. Квадратный трехчлен в знаменателе дроби не должен обращаться в ноль:

    Легко проверить, что все интервалы из условия задачи принадлежат области определения функции.

    Продифференцируем функцию:

    Очевидно, производная существует на всей области определения функции.

    Найдем стационарные точки. Производная обращается в ноль при . Эта стационарная точка попадает в интервалы (-3;1] и (-3;2) .

    А теперь можно сопоставить полученные в каждом пункте результаты с графиком функции. Синими пунктирными линиями обозначены асимптоты.

    На этом можно закончить с нахождением наибольшего и наименьшего значения функции. Алгоритмы, разобранные в этой статье, позволяют получить результаты при минимуме действий. Однако бывает полезно сначала определить промежутки возрастания и убывания функции и только после этого делать выводы о наибольшем и наименьшем значении функции на каком-либо интервале. Это дает более ясную картину и строгое обоснование результатов.

    Иногда в задачах B15 попадаются «плохие» функции, для которых сложно найти производную. Раньше такое было лишь на пробниках, но сейчас эти задачи настолько распространены, что уже не могут быть игнорированы при подготовке к настоящему ЕГЭ.

    В этом случае работают другие приемы, один из которых - монотонность .

    Функция f (x ) называется монотонно возрастающей на отрезке , если для любых точек x 1 и x 2 этого отрезка выполняется следующее:

    x 1 < x 2 ⇒ f (x 1 ) < f (x 2 ).

    Функция f (x ) называется монотонно убывающей на отрезке , если для любых точек x 1 и x 2 этого отрезка выполняется следующее:

    x 1 < x 2 ⇒ f (x 1 ) > f (x 2 ).

    Другими словами, для возрастающей функции чем больше x , тем больше f (x ). Для убывающей функции все наоборот: чем больше x , тем меньше f (x ).

    Например, логарифм монотонно возрастает, если основание a > 1, и монотонно убывает, если 0 < a < 1. Не забывайте про область допустимых значений логарифма: x > 0.

    f (x ) = log a x (a > 0; a ≠ 1; x > 0)

    Арифметический квадратный (и не только квадратный) корень монотонно возрастает на всей области определения:

    Показательная функция ведет себя аналогично логарифму: растет при a > 1 и убывает при 0 < a < 1. Но в отличие от логарифма, показательная функция определена для всех чисел, а не только для x > 0:

    f (x ) = a x (a > 0)

    Наконец, степени с отрицательным показателем. Можно записывать их как дробь. Имеют точку разрыва, в которой монотонность нарушается.

    Все эти функции никогда не встречаются в чистом виде. В них добавляют многочлены, дроби и прочий бред, из-за которого становится тяжело считать производную. Что при этом происходит - сейчас разберем.

    Координаты вершины параболы

    Чаще всего аргумент функции заменяется на квадратный трехчлен вида y = ax 2 + bx + c . Его график - стандартная парабола, в которой нас интересуют:

  • Ветви параболы - могут уходить вверх (при a > 0) или вниз (a < 0). Задают направление, в котором функция может принимать бесконечные значения;
  • Вершина параболы - точка экстремума квадратичной функции, в которой эта функция принимает свое наименьшее (для a > 0) или наибольшее (a < 0) значение.
  • Наибольший интерес представляет именно вершина параболы , абсцисса которой рассчитывается по формуле:

    Итак, мы нашли точку экстремума квадратичной функции. Но если исходная функция монотонна, для нее точка x 0 тоже будет точкой экстремума. Таким образом, сформулируем ключевое правило:

    Точки экстремума квадратного трехчлена и сложной функции, в которую он входит, совпадают. Поэтому можно искать x 0 для квадратного трехчлена, а на функцию - забить.

    Из приведенных рассуждений остается непонятным, какую именно точку мы получаем: максимума или минимума. Однако задачи специально составляются так, что это не имеет значения. Судите сами:

  • Отрезок в условии задачи отсутствует. Следовательно, вычислять f (a ) и f (b ) не требуется. Остается рассмотреть лишь точки экстремума;
  • Но таких точек всего одна - это вершина параболы x 0 , координаты которой вычисляются буквально устно и без всяких производных.
  • Таким образом, решение задачи резко упрощается и сводится всего к двум шагам:

  • Выписать уравнение параболы y = ax 2 + bx + c и найти ее вершину по формуле: x 0 = −b /2a ;
  • Найти значение исходной функции в этой точке: f (x 0). Если никаких дополнительных условий нет, это и будет ответом.
  • На первый взгляд, этот алгоритм и его обоснование могут показаться сложными. Я намеренно не выкладываю «голую» схему решения, поскольку бездумное применение таких правил чревато ошибками.

    Рассмотрим настоящие задачи из пробного ЕГЭ по математике - именно там данный прием встречается чаще всего. Заодно убедимся, что таким образом многие задачи B15 становятся почти устными.

    Под корнем стоит квадратичная функция y = x 2 + 6x + 13. График этой функции − парабола ветвями вверх, поскольку коэффициент a = 1 > 0.

    Вершина параболы:

    x 0 = −b /(2a ) = −6/(2 · 1) = −6/2 = −3

    Поскольку ветви параболы направлены вверх, в точке x 0 = −3 функция y = x 2 + 6x + 13 принимает наименьшее значение.

    Корень монотонно возрастает, значит x 0 - точка минимума всей функции. Имеем:

    Задача. Найдите наименьшее значение функции:

    y = log 2 (x 2 + 2x + 9)

    Под логарифмом снова квадратичная функция: y = x 2 + 2x + 9. График - парабола ветвями вверх, т.к. a = 1 > 0.

    Вершина параболы:

    x 0 = −b /(2a ) = −2/(2 · 1) = −2/2 = −1

    Итак, в точке x 0 = −1 квадратичная функция принимает наименьшее значение. Но функция y = log 2 x - монотонная, поэтому:

    y min = y (−1) = log 2 ((−1) 2 + 2 · (−1) + 9) = ... = log 2 8 = 3

    В показателе стоит квадратичная функция y = 1 − 4x − x 2 . Перепишем ее в нормальном виде: y = −x 2 − 4x + 1.

    Очевидно, что график этой функции - парабола, ветви вниз (a = −1 < 0). Поэтому вершина будет точкой максимума:

    x 0 = −b /(2a ) = −(−4)/(2 · (−1)) = 4/(−2) = −2

    Исходная функция - показательная, она монотонна, поэтому наибольшее значение будет в найденной точке x 0 = −2:

    Внимательный читатель наверняка заметит, что мы не выписывали область допустимых значений корня и логарифма. Но этого и не требовалось: внутри стоят функции, значения которых всегда положительны.

    Следствия из области определения функции

    Иногда для решения задачи B15 недостаточно просто найти вершину параболы. Искомое значение может лежать на конце отрезка , а вовсе не в точке экстремума. Если в задаче вообще не указан отрезок, смотрим на область допустимых значений исходной функции. А именно:

    Обратите внимание еще раз: ноль вполне может быть под корнем, но в логарифме или знаменателе дроби - никогда. Посмотрим, как это работает на конкретных примерах:

    Задача. Найдите наибольшее значение функции:

    Под корнем снова квадратичная функция: y = 3 − 2x − x 2 . Ее график - парабола, но ветви вниз, поскольку a = −1 < 0. Значит, парабола уходит на минус бесконечность, что недопустимо, поскольку арифметический квадратный корень из отрицательного числа не существует.

    Выписываем область допустимых значений (ОДЗ):

    3 − 2x − x 2 ≥ 0 ⇒ x 2 + 2x − 3 ≤ 0 ⇒ (x + 3)(x − 1) ≤ 0 ⇒ x ∈ [−3; 1]

    Теперь найдем вершину параболы:

    x 0 = −b /(2a ) = −(−2)/(2 · (−1)) = 2/(−2) = −1

    Точка x 0 = −1 принадлежит отрезку ОДЗ - и это хорошо. Теперь считаем значение функции в точке x 0 , а также на концах ОДЗ:

    y (−3) = y (1) = 0

    Итак, получили числа 2 и 0. Нас просят найти наибольшее - это число 2.

    Задача. Найдите наименьшее значение функции:

    y = log 0,5 (6x − x 2 − 5)

    Внутри логарифма стоит квадратичная функция y = 6x − x 2 − 5. Это парабола ветвями вниз, но в логарифме не может быть отрицательных чисел, поэтому выписываем ОДЗ:

    6x − x 2 − 5 > 0 ⇒ x 2 − 6x + 5 < 0 ⇒ (x − 1)(x − 5) < 0 ⇒ x ∈ (1; 5)

    Обратите внимание: неравенство строгое, поэтому концы не принадлежат ОДЗ. Этим логарифм отличается от корня, где концы отрезка нас вполне устраивают.

    Ищем вершину параболы:

    x 0 = −b /(2a ) = −6/(2 · (−1)) = −6/(−2) = 3

    Вершина параболы подходит по ОДЗ: x 0 = 3 ∈ (1; 5). Но поскольку концы отрезка нас не интересуют, считаем значение функции только в точке x 0:

    y min = y (3) = log 0,5 (6 · 3 − 3 2 − 5) = log 0,5 (18 − 9 − 5) = log 0,5 4 = −2

    В июле 2020 года NASA запускает экспедицию на Марс. Космический аппарат доставит на Марс электронный носитель с именами всех зарегистрированных участников экспедиции.


    Если этот пост решил вашу проблему или просто понравился вам, поделитесь ссылкой на него со своими друзьями в социальных сетях.

    Один из этих вариантов кода нужно скопировать и вставить в код вашей веб-станицы, желательно между тегами и или же сразу после тега . По первому варианту MathJax подгружается быстрее и меньше тормозит страницу. Зато второй вариант автоматически отслеживает и подгружает свежие версии MathJax. Если вставить первый код, то его нужно будет периодически обновлять. Если вставить второй код, то страницы будут загружаться медленнее, зато вам не нужно будет постоянно следить за обновлениями MathJax.

    Подключить MathJax проще всего в Blogger или WordPress: в панели управления сайтом добавьте виджет, предназначенный для вставки стороннего кода JavaScript, скопируйте в него первый или второй вариант кода загрузки, представленного выше, и разместите виджет поближе к началу шаблона (кстати, это вовсе не обязательно, поскольку скрипт MathJax загружается асинхронно). Вот и все. Теперь изучите синтаксис разметки MathML, LaTeX и ASCIIMathML, и вы готовы вставлять математические формулы на веб-страницы своего сайта.

    Очередной канун Нового Года... морозная погода и снежинки на оконном стекле... Все это побудило меня вновь написать о... фракталах, и о том, что знает об этом Вольфрам Альфа. По этому поводу есть интересная статья , в которой имеются примеры двумерных фрактальных структур. Здесь же мы рассмотрим более сложные примеры трехмерных фракталов.

    Фрактал можно наглядно представить (описать), как геометрическую фигуру или тело (имея ввиду, что и то и другое есть множество, в данном случае, множество точек), детали которой имеют такую же форму, как и сама исходная фигура. То есть, это самоподобная структура, рассматривая детали которой при увеличении, мы будем видеть ту же самую форму, что и без увеличения. Тогда как в случае обычной геометрической фигуры (не фрактала), при увеличении мы увидим детали, которые имеют более простую форму, чем сама исходная фигура. Например, при достаточно большом увеличении часть эллипса выглядит, как отрезок прямой. С фракталами такого не происходит: при любом их увеличении мы снова увидим ту же самую сложную форму, которая с каждым увеличением будет повторяться снова и снова.

    Бенуа Мандельброт (Benoit Mandelbrot), основоположник науки о фракталах, в своей статье Фракталы и искусство во имя науки написал: "Фракталы - это геометрические формы, которые в равной степени сложны в своих деталях, как и в своей общей форме. То есть, если часть фрактала будет увеличена до размера целого, она будет выглядеть, как целое, или в точности, или, возможно, с небольшой деформацией".