Сообщение хранение и передача точного времени. Глава шестая. Хранение и передача точного времена. Где работают астрономы

  • 1.2.3. Истинное и среднее солнечное время. Уравнение времени
  • 1.2.4. Юлианские дни
  • 1.2.5. Местное время на разных меридианах. Всемирное, поясное и декретное время
  • 1.2.6. Связь между средним солнечным и звездным временем
  • 1.2.7. Неравномерность вращения Земли
  • 1.2.8. Эфемеридное время
  • 1.2.9. Атомное время
  • 1.2.10. Динамическое и координатное время
  • 1.2.11. Системы Всемирного времени. Всемирное координированное время
  • 1.2.12. Время спутниковых навигационных систем
  • 1.3. Астрономические факторы
  • 1.3.1. Общие положения
  • 1.3.2. Астрономическая рефракция
  • 1.3.3. Параллакс
  • 1.3.4. Аберрация
  • 1.3.5. Собственное движение звезд
  • 1.3.6. Гравитационное отклонение света
  • 1.3.7. Движение земных полюсов
  • 1.3.8. Изменение положения оси мира в пространстве. Прецессия
  • 1.3.9. Изменение положения оси мира в пространстве. Нутация
  • 1.3.10. Совместный учет редукций
  • 1.3.11. Вычисление видимых мест звезд
  • 2. ГЕОДЕЗИЧЕСКАЯ АСТРОНОМИЯ
  • 2.1. Предмет и задачи геодезической астрономии
  • 2.1.1. Использование астрономических данных при решении задач геодезии
  • 2.1.3. Современные задачи и перспективы развития геодезической астрономии
  • 2.2. Теория методов геодезической астрономии
  • 2.2.2. Выгоднейшие условия определения времени и широты в зенитальных способах астрономических определений
  • 2.3. Приборное обеспечение в геодезической астрономии
  • 2.3.1. Особенности приборного обеспечения в геодезической астрономии
  • 2.3.2. Астрономические теодолиты
  • 2.3.3. Приборы для измерения и регистрации времени
  • 2.4. Особенности наблюдения светил в геодезической астрономии. Редукции астрономических наблюдений
  • 2.4.1. Методы визирования светил
  • 2.4.2. Поправки в измеренные зенитные расстояния
  • 2.4.3. Поправки в измеренные горизонтальные направления
  • 2.5. Понятие о точных способах астрономических определений
  • 2.5.1.Определение широты по измеренным малым разностям зенитных расстояний пар звезд в меридиане (способ Талькотта)
  • 2.5.2. Способы определения широты и долготы из наблюдений звезд на равных высотах (способы равных высот)
  • 2.5.3. Определение астрономического азимута направления на земной предмет по наблюдениям Полярной
  • 2.6. Приближенные способы астрономических определений
  • 2.6.1. Приближенные определения азимута земного предмета по наблюдениям Полярной
  • 2.6.2. Приближенные определения широты по наблюдениям Полярной
  • 2.6.3. Приближенные определения долготы и азимута по измеренным зенитным расстояниям Солнца
  • 2.6.4. Приближенные определения широты по измеренным зенитным расстояниям Солнца
  • 2.6.5. Определение дирекционного угла направления на земной предмет по наблюдениям светил
  • 2.7. Авиационная и мореходная астрономия
  • 3. АСТРОМЕТРИЯ
  • 3.1. Задачи астрометрии и методы их решения
  • 3.1.1. Предмет и задачи астрометрии
  • 3.1.3. Современное состояние и перспективы развития астрометрии
  • 3.2. Инструменты фундаментальной астрометрии
  • 3.2.2. Классические астрооптические инструменты
  • 3.2.3. Современные астрономические инструменты
  • 3.3. Создание фундаментальной и инерциальной систем координат
  • 3.3.1. Общие положения
  • 3.3.2. Теоретические основы определения координат звезд и их изменений
  • 3.3.3. Построение фундаментальной системы координат
  • 3.3.4. Построение инерциальной системы координат
  • 3.4.1. Установление шкалы точного времени
  • 3.4.2. Определение параметров ориентации Земли
  • 3.4.3. Организация службы времени, частоты и определения параметров ориентации Земли
  • 3.5. Фундаментальные астрономические постоянные
  • 3.5.1. Общие положения
  • 3.5.2. Классификация фундаментальных астрономических постоянных
  • 3.5.3. Международная система астрономических постоянных
  • БИБЛИОГРАФИЧЕСКИЙ СПИСОК
  • ПРИЛОЖЕНИЯ
  • 1. Система фундаментальных астрономических постоянных МАС 1976 г.
  • 1.2. Измерение времени в астрономии

    1.2.1. Общие положения

    Одной из задач геодезической астрономии, астрометрии и космической геодезии является определение координат небесных тел в заданный момент времени. Построением астрономических шкал времени занимаются национальные службы времени и Международное бюро времени.

    В основе всех известных способов построения непрерывных шкал времени лежат периодические процессы , например:

    - вращение Земли вокруг своей оси;

    - обращение Земли вокруг Солнца по орбите;

    - обращение Луны вокруг Земли по орбите;

    - качание маятника под действием силы тяжести;

    - упругие колебания кристалла кварца под действием переменного тока;

    - электромагнитные колебания молекул и атомов;

    - радиоактивный распад ядер атомов и другие процессы.

    Систему времени можно задать следующими параметрами:

    1) механизм – явление, обеспечивающее периодически повторяющийся процесс (например, суточное вращение Земли);

    2) масштаб – промежуток времени, за который повторяется процесс;

    3) начальная точка , нульпункт – момент начала повторения процесса;

    4) способ отсчета времени.

    В геодезической астрономии, астрометрии, небесной механике используются системы звездного и солнечного времени, основанные на вращении Земли вокруг оси. Это периодическое движение является в высшей степени равномерным, не ограниченным во времени и непрерывным на протяжении всего существования человечества.

    Кроме того, в астрометрии и небесной механике используются

    Системы эфемеридного и динамического времени, как идеальное по-

    строение равномерной шкалы времени;

    Система атомного времени – практическая реализация идеально равномерной шкалы времени.

    1.2.2. Звездное время

    Звездное время обозначается s. Параметрами системы звездного времени являются:

    1) механизм – вращение Земли вокруг своей оси;

    2) масштаб - звездные сутки , равные промежутку времени между двумя последовательными верхними кульминациями точки весеннего равноденствия

    в пункте наблюдения;

    3) начальная точка на небесной сфере - точка весеннего равноденствия, нульпункт (начало звездных суток) - момент верхней кульминации точки;

    4) способ отсчета. Мера измерения звездного времени - часовой угол точки

    весеннего равноденствия, t . Измерить его невозможно, но для любой звезды справедливо выражение

    следовательно, зная прямое восхождение звезды и вычисляя ее часовой угол t, можно определить звездное время s.

    Различают истинную, среднюю и квазиистинную точки гамма (разделение связано астрономическим фактором нутацией , см. пункт 1.3.9), относительно которых измеряется истинное, среднее и квазиистинное звездное время .

    Система звездного времени применяется при определении географических координат пунктов на поверхности Земли и азимутов направления на земные предметы, при изучении неравномерностей суточного вращения Земли, при установлении нульпунктов шкал других систем измерения времени. Эта система, хоть и широко применяется в астрономии, в повседневной жизни неудобна. Смена дня и ночи, обусловленная видимым суточным движением Солнца, создает вполне определенный цикл в деятельности человека на Земле. Поэтому издавна счисление времени ведется по суточному движению Солнца.

    1.2.3. Истинное и среднее солнечное время. Уравнение времени

    Система истинного солнечного времени (или истинное солнечное время - m ) применяется при астрономических или геодезических наблюдениях Солнца. Параметры системы:

    1) механизм - вращение Земли вокруг своей оси;

    2) масштаб - истинные солнечные сутки - промежуток времени между двумя последовательными нижними кульминациями центра истинного Солнца;

    3) начальная точка - центр диска истинного Солнца -  , нульпункт - истинная полночь , или момент нижней кульминации центра диска истинного Солнца;

    4) способ отсчета. Мера измерения истинного солнечного времени - геоцентрический часовой угол истинного Солнца t  плюс 12 часов:

    m = t + 12h .

    Единица истинного солнечного времени - секунда, равная 1/86400 истинных солнечных суток, не удовлетворяет основному требованию, предъявляемому к единице измерения времени - она не постоянна.

    Причинами непостоянства шкалы истинного солнечного времени являют-

    1) неравномерное движение Солнца по эклиптике вследствие эллиптичности орбиты Земли;

    2) неравномерное возрастание прямого восхождения Солнца в течение года, так как Солнце по эклиптике, наклоненной к небесному экватору под углом примерно 23.50 .

    Вследствие этих причин применение системы истинного солнечного времени на практике неудобно. Переход к равномерной шкале солнечного времени происходит в два этапа .

    Этап 1 переход к фиктивному среднему эклиптическому Солнцу . На дан-

    ном этапе исключается неравномерность движения Солнца по эклиптике. Неравномерное движение по эллиптической орбите заменяется равномерным движением по круговой орбите. Истинное Солнце и среднее эклиптическое Солнце совпадают, когда Земля проходит через перигелий и афелий своей орбиты.

    Этап 2 переход к среднему экваториальному Солнцу , движущемуся рав-

    номерно вдоль небесного экватора. Здесь исключается неравномерность возрастания прямого восхождения Солнца, обусловленная наклоном эклиптики. Истинное Солнце и среднее экваториальное Солнце одновременно проходят точки весеннего и осеннего равноденствия.

    В результате перечисленных действий вводится новая система измерения времени – среднее солнечное время .

    Среднее солнечное время обозначается m. Параметрами системы среднего солнечного времени являются:

    1) механизм - вращение Земли вокруг оси;

    2) масштаб - средние сутки - промежуток времени между двумя последовательными нижними кульминациями среднего экваториального Солнца  экв ;

    3) начальная точка - среднее экваториальное Солнце  экв , нульпункт - средняя полночь , или момент нижней кульминации среднего экваториального Солнца;

    4) способ отсчета. Мерой измерения среднего времени является геоцентрический часовой угол среднего экваториального Солнца t  экв плюс 12 часов.

    m = t экв + 12h .

    Определить среднее солнечное время непосредственно из наблюдений нельзя, так как среднее экваториальное Солнце – фиктивная точка на небесной сфере. Среднее солнечное время вычисляют по истинному солнечному времени, определенному из наблюдений истинного Солнца. Разность истинного солнечного времени m и среднего солнечного времени m называется уравнением времени и обозначается:

    M - m = t - t ср.экв. .

    Уравнение времени выражается двумя синусоидами с годовым и полуго-

    довым периодами:

    1 + 2 -7.7m sin (l + 790 )+ 9.5m sin 2l,

    где l – эклиптическая долгота среднего эклиптического Солнца.

    График есть кривая с двумя максимумами и двумя минимумами, которая в декартовой прямоугольной системе координат имеет вид, показанный на рис. 1.18.

    Рис.1.18. График уравнения времени

    Значения уравнения времени лежат в пределах от +14m до –16m .

    В Астрономическом Ежегоднике на каждую дату приводится величина Е, равная

    Е = + 12 h .

    С данной величиной связь между средним солнечным временем и часовым углом истинного Солнца определяется выражением

    m = t -E.

    1.2.4. Юлианские дни

    При точном определении численного значения промежутка времени, заключенного между двумя отдаленными датами удобно пользоваться непрерывным счетом суток, которые в астрономии называют юлианскими днями .

    Начало счета юлианских дней – средний гринвичский полдень 1 января 4713 г. до н.э., от начала этого периода ведется счет и нумерация средних солнечных суток так, что каждой календарной дате соответствует определенный юлианский день, обозначаемый кратко JD. Так, эпохе 1900,январь 0,12h UT соответствует юлианская дата JD 2415020.0, а эпохе 2000, январь 1, 12h UT - JD2451545.0.

    На обсерваториях есть инструменты, при помощи которых определяют точнейшим образом время - проверяют часы. Время устанавливают по положению, занимаемому светилами над горизонтом. Для того чтобы часы обсерватории шли как можно точнее и равномернее в промежутке между вечерами, когда их проверяют по положению звезд, часы помещают в глубокие подвалы. В таких подвалах круглый год сохраняется постоянная температура. Это очень важно, так как изменения температуры влияют на ход часов.

    Для передачи сигналов точного времени по радио на обсерватории имеется специальная сложная часовая, электрическая и радиоаппаратура. Передаваемые из Москвы сигналы точного времени - одни из самых точных в мире. Определение точного времени по звездам, хранение времени при помощи точных часов и передача его по радио - все это составляет Службу времени.

    ГДЕ РАБОТАЮТ АСТРОНОМЫ

    Научную работу астрономы ведут на обсерваториях и в астрономических институтах.

    Последние занимаются главным образом теоретическими исследованиями.

    После Великой Октябрьской социалистической революции в нашей стране были созданы Институт теоретической астрономии в Ленинграде, Астрономический институт им. П. К. Штернберга в Москве, астрофизические обсерватории в Армении, Грузии и ряд других астрономических учреждений.

    Подготовка и обучение астрономов происходит в университетах на механико-математических или физико-математических факультетах.

    Главная обсерватория в нашей стране - Пулковская. Она была построена в 1839 г. вблизи Петербурга под руководством крупнейшего русского ученого . Во многих странах ее справедливо называют астрономической столицей мира.

    Симеизская обсерватория в Крыму после Великой Отечественной войны была полностью восстановлена, а недалеко от нее выстроена новая обсерватория в селе Партизанском под Бахчисараем, где теперь установлен крупнейший в СССР телескоп-рефлектор с зеркалом диаметром в 1 ¼ м, а скоро будет установлен рефлектор с зеркалом диаметром в 2,6 м - третий по величине в мире. Обе обсерватории теперь составляют одно учреждение - Крымскую астрофизическую обсерваторию Академии наук СССР. Астрономические обсерватории есть в Казани, Ташкенте, Киеве, Харькове и других местах.

    На всех обсерваториях у нас ведется научная работа по согласованному плану. Достижения астрономической науки в нашей стране помогают широким слоям трудящихся выработать правильное, научное представление об окружающем нас мире.

    Много астрономических обсерваторий существует и в других странах. Из них наиболее известны старейшие из существующих - Парижская и Гринвичская, от меридиана которой ведется счет географических долгот на земном шаре (недавно эта обсерватория перенесена на новое место, дальше от Лондона, где много помех для ночных наблюдений неба). Самые крупные в мире телескопы установлены в Калифорнии на обсерваториях Маунт-Паломар, Маунт-Вильсон и Ликской. Последняя из них построена в конце XIX в., а первые две - уже в XX в.

    Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

    Служба точного времени
    Задачи службы точного времени - определить точное время, уметь его сохранить и донести до потребителя. Если представить, что стрелка часов это оптическая ось телескопа, вертикально направленного в небо, то циферблат - это звёзды, одна за другой попадающие в поле зрения этого телескопа. Регистрация моментов прохождения звёзд через визир телескопа - таков общий принцип классического определения астрономического времени. Судя по дошедшим до нас мегалитическим памятникам, самым известным из которых является Стоунхендж в Англии, этот метод визирных засечек с успехом использовался ещё в бронзовом веке. Само название астрономической службы времени теперь устарело. С 1988 года эта служба называется Международная Служба Вращения Земли (International Earth Rotation Service http://hpiers.obspm.fr/eop-pc/).
    Классический астрономический способ определения точного времени (Всемирное время, UT) связан с измерением угла поворота любого избранного меридиана Земли относительно "сферы неподвижных звёзд". Избранным, в итоге, оказался Гринвичский меридиан. Однако в России, например, долгое время за нулевой принимался Пулковский меридиан. Фактически любой меридиан, на котором установлен специализированный для регистрации моментов звёздных прохождений телескоп (пассажный инструмент, зенитная труба, астролябия), подходит для решения первой задачи службы точного времени. Но не любая широта является для этого оптимальной, что очевидно, например, ввиду схождения всех меридианов в географических полюсах.
    Из способа определения астрономического времени очевидна его связь с определением долгот на Земле и вообще с координатными измерениями. В сущности, это единая задача координатно-временного обеспечения (КВО) . Понятна сложность этой задачи, решение которой длилось много столетий и продолжает оставаться актуальнейшей задачей геодезии, астрономии и геодинамики.
    При определении UT астрономическими методами необходимо учитывать:

    • что "сферы неподвижных звёзд" не существует, т. е. координаты звёзд ("циферблат" звездных часов, определяющих и точность этих часов) надо постоянно уточнять из наблюдений,
    • что ось вращение Земли под влиянием гравитационных сил Солнца, Луны и других планет совершает сложные периодические (прецессионные и нутационные) движения, описываемые рядами из сотен гармоник,
    • что наблюдения происходят с поверхности сложно движущейся в пространстве Земли и, следовательно, необходимо учитывать параллактические и аберрационные эффекты,
    • что телескопы, на которых производятся наблюдения UT, имеют свои непостоянные погрешности, зависящие, в частности, от климатических условий и определяемые из тех же наблюдений,
    • что наблюдения происходят "на дне" атмосферного океана, искажающего истинные координаты звёзд (рефракция) часто трудно учитываемым образом,
    • что сама ось вращения "болтается" в теле Земли и это явление также как и ряд приливных эффектов и эффектов, обусловленных атмосферными влияниями на вращение Земли, определяются из самих наблюдений,
    • что вращение Земли вокруг своей оси, вплоть до 1956 года служившее эталоном времени, происходит неравномерно, что также определяется из самих наблюдений.

    Для точного счета времени необходим эталон. Выбранный эталон - период вращения Земли - оказался не вполне надежным. Солнечные сутки - одна из основных единиц времени, избрана давно. Но скорость вращения Земли меняется на протяжении года, поэтому и применяются средние солнечные сутки, отличающееся от истинных до 11 минут. Из-за неравномерности движения Земли по эклиптике принятые солнечные сутки в 24 часа больше за год на 1 сутки звездных, составляющих 23 час 56 мин 4, 091 сек, в то время средние солнечные 24 час 3 мин 56, 5554 сек.
    В 1930-х годах было установлено неравномерное вращение Земли вокруг своей оси. Неравномерность связана в частности: с вековым замедлением вращения Земли вследствие приливного трения от Луны и Солнца; нестационарными процессами внутри Земли. Средние звездные сутки вследствие процессии земной оси на 0,0084 с короче действительного периода вращения Земли. Приливное действие Луны тормозит вращение Земли на 0,0023с за 100 лет. Поэтому понятно, что определение секунды как единицы времени, составляющей 1/86400 часть суток, потребовало уточнения.
    1900 год был принят за единицу измерения тропического года (продолжительность между двумя последовательными прохождениями центра Солнца через точку весеннего равноденствия) равного 365,242196 суток, или 365 суток 5 часов 48 минут 48,08 секунд. Через него определена продолжительность секунды =1/31556925,9747 тропического 1900 года.
    В октябре 1967г в Париже 13 Генеральная конференция Международного комитета мер и весов определяет продолжительность атомного секунды - промежутка времени, за который совершается 9 192 631 770 колебаний, соответствующих частоте излечения (поглощения) атомом Цезия - 133 при резонансном переходе между двумя сверхтонкими энергетическими уровнями основного состояния атома при отсутствии возмущений от внешних магнитных полей и фиксируется как радиоизлучение с длиной волны около 3,26 см.
    Точностью атомных часов - ошибка в 1с за 10000 лет. Погрешность 10-14с.
    С 1 января 1972г СССР и многие страны мира перешли на атомный стандарт времени.
    Транслируемые по радио сигналы точного времени передаются по атомным часам для точного определения местного времени (т.е географической долготы - местонахождения опорных пунктов, находя моменты кульминации звезд), а также для авиационной и морской навигации.
    Первые сигналы точного времени по радио начали передавать станция г. Бостон (США) в 1904г, с 1907г в Германии, с 1910г в Париже (радиостанция Эйфелевой башни). В нашей стране с 1 декабря 1920г Пулковская обсерватория приступила к передачам ритмического сигнала через Петроградскую радиостанцию «Новая Голландия», а с 25 мая 1921г через Московскую Октябрьскую радиостанцию на Ходынке. Организаторами в стране радиотехническую службу времени были Николай Иванович ДНЕПРОВСКИЙ (1887-1944), Александр Павлович Константинов (1895-1937) и Павел Андреевич Азбукин (1882-1970).
    Постановлением Совнаркома в 1924г при Пулковской обсерватории организован Междуведомственный комитет службы времени, который с 1928г стал публиковать бюллетени сводных моментов. В 1931г были организованы две новые службы времени в ГАИШ и ЦНИИГАиК и начала регулярную работу служба времени Ташкентской обсерватории.
    В марте 1932г проведена первая астрометрическая конференция в Пулковской обсерватории на которой принято решение: о создании службы времени в СССР. В предвоенное время работало 7 служб времени, причем в Пулкове, ГАИШ и Ташкенте велись передачи ритмических сигналов времени по радио.
    Наиболее точные часы, используемые службой (хранятся в подвале при постоянном давлении, температуре т.д.) были двухмаятниковые часы Шорта (точность ± 0,001с/сут), Ф.М. Федченко (± 0,0003с/сут), затем стали использовать кварцевые (с их помощью обнаружена неравномерность вращения Земли) до введения атомных часов, которые используются сейчас службой времени. Льюис Эссен (Англия) физик-экспериментатор, создатель кварцевых и атомных часов, в 1955 создал первый атомный стандарт частоты (времени) на пучке атомов цезия, в результате которого через три года возникла служба времени, основанная на атомном стандарте частоты.
    По атомным эталоном США, Канады и Германии устанавливается с 1 января 1972г TAI - среднее значение атомного времени, на основе которого создана шкала UTC (универсальное всемирное координатное время), которое от среднего солнечного отличается не более чем на 1 сек (точностью ±0,90 сек). Ежегодно в UTC вводится поправка на 1 сек 31 декабря или 30 июня.
    В последней четверти ХХ века для целей определения Всемирного времени использовались уже и внегалактические астрономические объекты - квазары. При этом регистрируется их широкополосный радиосигнал на двух разнесённых на тысячи километров радиотелескопах (радиоинтерферометры со сверхдлинной базой - РСДБ) в синхронизованной шкале атомных стандартах времени и частоты. Помимо этого используются системы, основанные на наблюдениях спутников (GPS - Global Positioning System, ГЛОНАСС - глобальная навигационная спутниковая система и ЛЛС - Лазерная Локация Спутников) и уголковых отражателей, установленных на Луне (Лазерная Локация Луны - ЛЛЛ).
    Астрономические понятия
    Астрономическое Время. До 1925 года в астрономической практике за начало средних солнечных суток принимали момент верхней кульминации (полдень) среднего солнца. Такое время называлось средним астрономическим или просто астрономическим. В качестве единицы измерения использовалась средняя солнечная секунда. С 1 января 1925 года заменено на всемирное время (UT)
    Атомное время (АТ - Atomic Time) введено с 1 января 1964 года. За единицу времени принята атомная секунда, равная промежутку времени, в течение которого совершается 9 192 631 770 колебаний, соответствующих частоте излучения между двумя уровнями сверхтонкой структуры основного состояния атома цезия-133 в отсутствии внешних магнитных полей. Носителями АТ являются более 200 атомных стандартов времени и частоты, расположенных в более чем 30 странах мира. Эти стандарты (часы) постоянно сличаются между собой через систему спутников GPS/ГЛОНАСС, с помощью чего и выводится международная шкала атомного времени (TAI). На основании сличения считается, что шкала TAI не расходится с воображаемыми абсолютно точными часами более чем на 0.1 микросекунды за год. АТ не связано с астрономическим способом определения времени, основанным на измерении скорости вращения Земли, поэтому с течением времени шкалы АТ и UT могут разойтись на значительную величину. Для исключения этого с 1 января 1972 года введено Всемирное координированное время (UTC).
    Всемирное время (UT - Universal Time) используется с 1 января 1925 года вместо астрономического времени. Отсчитывается от нижней кульминации среднего солнца на меридиане Гринвича. С 1 января 1956 года определены три шкалы всемирного времени:
    UT0 - всемирное время, определяемое на основе непосредственных астрономических наблюдений, т.е. время мгновенного гринвичского меридиана, положение плоскости которого характеризуется мгновенным положением полюсов Земли;
    UT1 - время среднего гринвичского меридиана, определяемое средним положением полюсов Земли. Отличается от UT0 поправками на смещение географического полюса вследствие смещения тела Земли относительно оси ее вращения;
    UT2 - это "сглаженное" время UT1 с поправками на сезонные изменения угловой скорости вращения Земли.
    Всемирное координированное время (UTC). В основе UTC лежит шкала АТ, которая по мере необходимости, но только 1 января или 1 июля, может корректироваться вводом дополнительной отрицательной или положительной секунды так, чтобы разность между UTC и UT1 не превышала 0.8 сек. Шкала времени Российской федерации UTC(SU) воспроизводится Государственным эталоном времени и частоты и согласована со шкалой международного бюро времени UTC. В настоящее время (начало 2005 года) TAI - UTC = 32 секунды. Существует множество сайтов, где можно взять точное время, например, на сервере международной бюро Мер и Весов (BIPM) http://www.bipm.fr/en/scientific/tai/time_server.html .
    Звёздные сутки - промежуток времени между двумя последовательными одноименными кульминациями точки весеннего равноденствия на одном и том же меридиане. За начало звёздных суток принят момент её верхней кульминации. Существует истинное и среднее звёздное время в зависимости от выбранной точки весеннего равноденствия. Средние звёздные сутки равны 23 часам.56 минутам 04,0905 секундам среднесолнечных суток.
    Истинное солнечное время - неравномерное время, определяемое движением истинного солнца и выражаемое в долях истинных солнечных суток. Неравномерность истинного солнечного времени (уравнение времени) обусловлена 1) наклоном эклиптики к экватору и 2) неравномерностью движения солнца по эклиптике ввиду эксцентриситета орбиты Земли.
    Истинные солнечные сутки - промежуток времени между двумя последовательными одноименными кульминациями истинного солнца на одном и том же меридиане. За начало истинных солнечных суток принят момент нижней кульминации (полночь) истинного солнца.
    Среднее солнечное время - равномерное время, определяемое движением среднего солнца. Использовалось как эталон равномерного времени с масштабом в одну среднюю солнечную секунду (1/86400 доля средних солнечных суток) до 1956 года.
    Средние солнечные сутки - промежуток времени между двумя последовательными одноименными кульминациями среднего солнца на одном и том же меридиане. За начало среднесолнечных суток принят момент нижней кульминации (полночь) среднего солнца.
    Среднее (экваториальное) солнце - фиктивная точка на небесной сфере, равномерно движущаяся по экватору со среднегодовой скоростью движения истинного Солнца по эклиптике.
    Среднее эклиптическое солнце - фиктивная точка на небесной сфере, равномерно движущаяся по эклиптике со среднегодовой скоростью истинного Солнца. Движение среднего эклиптического солнца по экватору неравномерно.
    Точка весеннего равноденствия - та их двух точек пересечения экватора и эклиптики на небесной сфере, которую центр солнца проходит весной. Существуют истинная (движущаяся вследствие прецессии и нутации) и средняя (движущаяся только вследствие прецессии) точки весеннего равноденствия.
    Тропический год - промежуток времени между двумя последовательными прохождениями среднего солнца через среднюю точку весеннего равноденствия, равен 365,24219879 среднесолнечных суток или 366,24219879 звёздных суток.
    Уравнение времени - разность между истинным солнечным временем и средним солнечным временем. Она достигает +16 минут в начале ноября и -14 минут в средине февраля. Публикуется в Астрономических ежегодниках.
    Эфемеридное время (ЕТ - Ephemeris time) - независимая переменная (аргумент) в небесной механике (ньютоновская теория движения небесных тел). Введено с 1 января 1960 года в астрономических ежегодниках как более равномерное, чем Всемирное время, отягощенное долгопериодическими неравномерностями во вращении Земли. Определяется из наблюдения тел солнечной системы (в основном Луны). В качестве единицы измерения принята эфемеридная секунда как 1/31556925,9747 доля тропического года для момента 1900 январь 0, 12 часов ЕТ или, иначе, как 1/86400 доля продолжительности средних солнечных суток для этого же момента.

    Каждое астрономическое наблюдение должно сопровождаться данными о моменте времени его выполнения. Точность момента времени может быть различной, в зависимости от требований и свойств наблюдаемого явления. Так, например, при обычных наблюдениях метеоров и переменных звезд вполне достаточно знать момент с точностью до минуты. Наблюдения же солнечных затмений, покрытий звезд Луной и в особенности наблюдения за движением искусственных спутников Земли требуют отметки моментов с точностью не меньшей, чем до десятой доли секунды. Точные же астрометрические наблюдения суточного вращения небесной сферы заставляют применять особые способы регистрации моментов времени с точностью до 0,01 и даже 0,005 секунды!

    Поэтому одна из основных задач практической астрономии состоит в получении из наблюдений точного времени, хранении его и сообщении данных о времени потребителям.

    Для хранения времени астрономы располагают очень точными часами, которые регулярно проверяют, определяя моменты кульминаций звезд при помощи специальных инструментов. Передача же сигналов точного времени по радио позволила им организовать всемирную Службу времени, т. е. связать все обсерватории, занимающиеся наблюдениями такого рода, в одну систему.

    В обязанность Служб времени, помимо подачи в эфир сигналов точного времени, входит также передача упрощенных сигналов, которые всем радиослушателям хорошо известны. Это шесть коротких сигналов, «точек», которые подаются перед началом нового часа. Момент последней «точки», с точностью до сотой доли секунды, совпадает с началом нового часа. Любителю астрономии рекомендуется пользоваться этими сигналами для проверки своих часов. Проверяя часы, мы не должны их переводить, так как при этом механизм портите я, а астроном должен беречь свои часы, так как это один из основных его инструментов. Он должен определять «поправку часов» - разность между точным временем и их показаниями. Эти поправки должны систематически определяться и записываться в дневник наблюдателя; их дальнейшее изучение позволит определить ход часов и хорошо их исследовать.

    Конечно, желательно иметь в своем распоряжении возможно лучшие часы. Что же надо понимать под термином «хорошие часы»?

    Необходимо, чтобы они возможно точнее сохраняли свой ход. Сравним между собой два экземпляра обычных карманных часов:

    Положительный знак поправки означает, что для получения точного времени надо к показанию часов прибавить поправку.

    В двух половинах таблички приведены записи поправок часов. Вычитая из нижней поправки верхнюю и деля на количество прошедших между определениями суток, мы получаем суточный ход часов. Данные о ходе приведены в той же таблице.

    Почему мы назвали одни часы плохими, а другие хорошими? У первых часов поправка близка к нулю, но их ход меняется нерегулярно. У вторых - поправка велика, но ход равномерен. Первые часы пригодны для таких наблюдений, которые не требуют отметки времени точнее, чем до минуты. Интерполировать их показания нельзя, а проверять их надо несколько раз в ночь.

    Вторые, «хорошие часы», пригодны для выполнения более сложных наблюдений. Конечно, полезно их проверять чаще, но можно интерполировать их показания для промежуточных моментов. Покажем это на примере. Допустим, что наблюдение сделано 5 ноября в 23 ч. 32 м. 46 с. по нашим часам. Проверка часов, произведенная в 17 часов 4 ноября, дала поправку +2 м. 15 с. Суточный ход, как видно из таблицы, +5,7 с. С 17 часов 4 ноября до момента наблюдения прошли 1 сутки и 6,5 часа или 1,27 суток. Умножая это число на суточный ход, получаем +7,2 с. Поэтому поправка часов в момент наблюдения была равна не 2 м. 15 с., а +2 м. 22 с. Ее мы и прибавляем к моменту наблюдения. Итак, наблюдение произведено 5 ноября в 23 ч. 35 м. 8 с.

    Я счастлива жить образцово и просто:
    Как солнце - как маятник - как календарь
    М. Цветаева

    Урок 6/6

    Тема Основы измерения времени.

    Цель Рассмотреть систему счета времени и ее связь с географической долготой. Дать представление о летоисчислении и календаре, определении географических координат (долготы) местности по данным астрометрических наблюдений.

    Задачи :
    1. Обучающая : практической астрометрии о: 1) астрономических способах, инструментах и единицах измерения, счета и хранения времени, календарях и летоисчислении; 2) определении географических координат (долготы) местности по данным астрометрических наблюдений. Службы Солнца и точного времени. Применение астрономии в картографии. О космических явлениях: обращении Земли вокруг Солнца, обращении Луны вокруг Земли и вращении Земли вокруг своей оси и об их следствиях - небесных явлениях: восходе, заходе, суточном и годичном видимом движении и кульминациях светил (Солнца, Луны и звезд), смене фаз Луны.
    2. Воспитывающая : формирование научного мировоззрения и атеистическое воспитание в ходе знакомства с историей человеческого познания, с основными типами календарей и системами летоисчисления; развенчание суеверий, связанных с понятиями "високосный год" и переводом дат юлианского и григорианского календарей; политехническое и трудовое воспитание при изложении материала о приборах для измерения и хранения времени (часах), календарях и системах летоисчисления и о практических способах применения астрометрических знаний.
    3. Развивающая : формирование умений: решать задачи на расчет времени и дат летоисчисления и перевод времени из одной системы хранения и счета в другую; выполнять упражнения на применение основных формул практической астрометрии; применять подвижную карту звездного неба, справочники и Астрономический календарь для определения положения и условий видимости небесных светил и протекания небесных явлений; определять географические координаты (долготу) местности по данным астрономических наблюдений.

    Знать:
    1-й уровень (стандарт) - системы счета времени и единицы измерения; понятие полдня, полуночи, суток, связи времени с географической долготой; нулевого меридиана и всемирного времени; поясное, местное, летнее и зимнее время; способы перевода; наше летоисчисление, возникновение нашего календаря.
    2-й уровень - системы счета времени и единицы измерения; понятие полдня, полуночи, суток; связи времени с географической долготой; нулевого меридиана и всемирного времени; поясное, местное, летнее и зимнее время; способы перевода; назначение службы точного времени; понятие летоисчисления и примеры; понятие календаря и основные типы календарей: лунный, лунно-солнечный, солнечный (юлианский и григорианский) и основы летоисчисления; проблему создания постоянно действующего календаря. Основные понятия практической астрометрии: принципы определения времени и географических координат местности по данным астрономических наблюдений. Причины повседневно наблюдаемых небесных явлений, порожденных обращением Луны вокруг Земли (смена фаз Луны, видимое движение Луны по небесной сфере).

    Уметь:
    1-й уровень (стандарт) - находить время всемирное, среднее, поясное, местное, летнее, зимнее;
    2-й уровень - находить время всемирное, среднее, поясное, местное, летнее, зимнее; переводить даты со старого на новый стиль и обратно. Решать задачи на определение географических координат места и времени наблюдения.

    Оборудование: плакат «Календарь», ПКЗН, маятниковые и солнечные часы, метроном, секундомер, кварцевые часы Глобус Земли, таблицы: некоторые практические применения астрономии. CD- "Red Shift 5.1"(Время -показ, Рассказы о Вселенной = Время и времена года). Модель небесной сферы; настенная карта звездного неба, карта часовых поясов. Карты и фотографии земной поверхности. Таблица "Земля в космическом пространстве". Фрагменты диафильмов "Видимое движение небесных светил"; "Развитие представлений о Вселенной"; "Как астрономия опровергла религиозные представления о Вселенной"

    Межпредметная связь: Географические координаты, счет времени и способы ориентирования, картографическая проекция (география, 6-8 кл)

    Ход урока

    1. Повторение изученного (10 мин).
    а) 3 человека по индивидуальным карточкам.
    1. 1. На какой высоте в Новосибирске (φ= 55º) кульминирует Солнце 21 сентября? [на вторую неделю октября по ПКЗН δ=-7º , тогда h=90 о -φ+δ=90 о -55º-7º=28º ]
    2. Где на земле не видно никаких звезд южного полушария? [на северном полюсе]
    3. Как ориентироваться на местности по Солнцу? [март, сентябрь - восход на востоке, заход на западе, полдень на юге]
    2. 1. Полуденная высота Солнца 30º, а его склонение 19º. Определить географическую широту места наблюдения.
    2. Как располагаются суточные пути звезд относительно небесного экватора? [параллельно]
    3. Как ориентироваться на местности по Полярной звезде? [направление на север]
    3. 1. Каково склонение звезды, если она кульминирует в Москве (φ= 56º ) на высоте 69º?
    2. Как располагается ось мира относительно земной оси, относительно плоскости горизонта? [параллельно, под углом географической широты места наблюдения]
    3. Как определить географическую широту местности из астрономических наблюдений? [замерить угловую высоту Полярной звезды]

    б) 3 человека у доски.
    1.Вывести формулу высоты светила.
    2. Суточные пути светил (звезд) на разных широтах.
    3. Доказать, что высота полюса мира равна географической широте.

    в) Остальные самостоятельно .
    1. Какой наибольшей высоты достигает Вега (δ=38 о 47") в Колыбельке (φ=54 о 04 ")? [наибольшая высота в верхней кульминации, h=90 о -φ+δ=90 о -54 о 04 " +38 о 47"=74 о 43"]
    2. Выбрать по ПКЗН любую яркую звезду и запишите ее координаты.
    3. В каком созвездии находится Солнце сегодня и каковы его координаты? [на вторую неделю октября по ПКЗН в созв. Девы, δ=-7º , α=13 ч 06 м ]

    г) в "Red Shift 5.1"
    Найти Солнце:
    - какую информацию можно получить о Солнце?
    - каковы его координаты сегодня и в каком созвездии находится?
    - как меняется склонение? [уменьшается]
    - какая из звезд, имеющих собственное имя, наиболее близка по угловому расстоянию к Солнцу и каковы её координаты?
    - докажите что Земля в данный момент двигаясь по орбите приближается к Солнцу (из таблицы видимости - растет угловой диаметр Солнца)

    2. Новый материал (20 мин)
    Нужно обратить внимание учеников :
    1. Продолжительность суток и года зависит от того, в какой системе отсчета рассматривается движение Земли (связана ли она с неподвижными звездами, Солнцем и т.д). Выбор системы отсчета отражается в названии единицы счета времени.
    2. Продолжительность единиц счета времени связана с условиями видимости (кульминациями) небесных светил.
    3. Введение атомного стандарта времени в науке было обусловлено неравномерностью вращения Земли, обнаруженной при повышении точности часов.
    4. Введение поясного времени обусловлено необходимостью согласования хозяйственных мероприятий на территории, определяемой границами часовых поясов.

    Системы счета времени. Связь с географической долготой. Тысячи лет назад люди заметили, что многое в природе повторяется: Солнце встает на востоке и заходит на западе, лето сменяет зиму и наоборот. Именно тогда возникли первые единицы времени - день, месяц, год . С помощью простейших астрономических приборов было установлено, что в году около 360 дней, и приблизительно за 30 дней силуэт Луны проходит цикл от одного полнолуния к следующему. Поэтому халдейские мудрецы приняли в основу шестидесятеричную систему счисления: сутки разбили на 12 ночных и 12 дневных часов , окружность - на 360 градусов. Каждый час и каждый градус были разделены на 60 минут , а каждая минута - на 60 секунд .
    Однако последующие более точные измерения безнадежно испортили это совершенство. Оказалось, что Земля делает полный оборот вокруг Солнца за 365 суток 5 часов 48 минут и 46 секунд. Луне же, чтобы обойти Землю, требуется от 29,25 до 29,85 суток.
    Периодические явления, сопровождаемые суточным вращением небесной сферы и видимое годовое движение Солнца по эклиптике лежат в основе различных систем счета времени. Время - основная физическая величина, характеризующая последовательную смену явлений и состояний материи, длительность их бытия.
    Короткие - сутки, час, минута, секунда
    Длинные - год, квартал, месяц, неделя.
    1. "Звездное " время, связанное с перемещением звезд на небесной сфере. Измеряется часовым углом точки весеннего равноденствия: S = t ^ ; t = S - a
    2. "Солнечное " время, связанное: с видимым движением центра диска Солнца по эклиптике (истинное солнечное время) или движением "среднего Солнца" - воображаемой точки, равномерно перемещающейся по небесному экватору за тот же промежуток времени, что и истинное Солнце (среднее солнечное время).
    С введением в 1967 году атомного стандарта времени и Международной системы СИ в физике используется атомная секунда.
    Секунда - физическая величина, численно равная 9192631770 периодам излучения, соответствующего переходу между сверхтонкими уровнями основного состояния атома цезия-133.
    Все вышеописанные "времена" согласуются между собой путем специальных расчетов. В повседневной жизни используется среднее солнечное время . Основной единицей звездного, истинного и среднего солнечного времени являются сутки. Звездные, средние солнечные и иные секунды мы получаем делением соответствующих суток на 86400 (24 h , 60 m , 60 s). Сутки стали первой единицей измерения времени свыше 50000 лет назад. Сутки - промежуток времени, в течение которого Земля делает один полный оборот вокруг своей оси относительно какого-либо ориентира.
    Звездные сутки - период вращения Земли вокруг своей оси относительно неподвижных звезд, определяется как промежуток времени между двумя последовательными верхними кульминациями точки весеннего равноденствия.
    Истинные солнечные сутки - период вращения Земли вокруг своей оси относительно центра диска Солнца, определяемый как промежуток времени между двумя последовательными одноименными кульминациями центра диска Солнца.
    Ввиду того, что эклиптика наклонена к небесному экватору под углом 23 о 26", а Земля вращается вокруг Солнца по эллиптической (слегка вытянутой) орбите, скорость видимого движения Солнца по небесной сфере и, следовательно, продолжительность истинных солнечных суток будет постоянно изменяться на протяжении года: наиболее быстро вблизи точек равноденствий (март, сентябрь), наиболее медленно вблизи точек солнцестояний (июнь, январь). Для упрощения расчетов времени в астрономии введено понятие средних солнечных суток - периода вращения Земли вокруг своей оси относительно "среднего Солнца".
    Средние солнечные сутки определяются как промежуток времени между двумя последовательными одноименными кульминациями "среднего Солнца". Они на 3 m 55,009 s короче звездных суток.
    24 h 00 m 00 s звездного времени равны 23 h 56 m 4,09 s среднего солнечного времени. Для определенности теоретических расчетов принята эфемеридная (табличная) секунда, равная средней солнечной секунде 0 января 1900 года в 12 часов равнотекущего времени, не связанного с вращением Земли.

    Около 35000 лет назад люди обратили внимание на периодическое изменение вида Луны - смену лунных фаз. Фаза Ф небесного светила (Луны, планеты и т.д.) определяется отношением наибольшей ширины освещенной части диска d к его диаметру D : Ф= d/D . Линия терминатора разделяет темную и светлую часть диска светила. Луна движется вокруг Земли в ту же сторону, в какую Земля вращается вокруг своей оси: с запада на восток. Отображением этого движения является видимое перемещение Луны на фоне звезд навстречу вращению неба. Каждые сутки Луна смещается к востоку на 13,5 o относительно звезд и за 27,3 суток совершает полный круг. Так была установлена вторая после суток мера времени - месяц .
    Сидерический (звездный) лунный месяц - период времени, в течение которого Луна совершает один полный оборот вокруг Земли относительно неподвижных звезд. Равен 27 d 07 h 43 m 11,47 s .
    Синодический (календарный) лунный месяц - промежуток времени между двумя одноименными последовательными фазами (обычно новолуниями) Луны. Равен 29 d 12 h 44 m 2,78 s .
    Совокупность явлений видимого движения Луны на фоне звезд и смены фаз Луны позволяет ориентироваться по Луне на местности (рис). Луна появляется узеньким серпиком на западе и исчезает в лучах утренней зари таким же узким серпом на востоке. Мысленно приставим слева к лунному серпу прямую линию. Мы можем прочесть на небе либо букву "Р" - "растет", "рога" месяца повернуты влево - месяц виден на западе; либо букву "С" - "стареет", "рога" месяца повернуты вправо - месяц виден на востоке. В полнолуние Луна в полночь видна на юге.

    В результате наблюдений за изменением положения Солнца над горизонтом в течение многих месяцев возникла третья мера времени - год .
    Год - промежуток времени, в течение которого Земля делает один полный оборот вокруг Солнца относительно какого-либо ориентира (точки).
    Звездный год - сидерический (звездный) период обращения Земли вокруг Солнца, равный 365,256320... средних солнечных суток.
    Аномалистический год - промежуток времени между двумя последовательными прохождениями среднего Солнца через точку своей орбиты (обычно, перигелий), равен 365,259641... средних солнечных суток.
    Тропический год - промежуток времени между двумя последовательными прохождениями среднего Солнца через точку весеннего равноденствия, равный 365,2422... средних солнечных суток или 365 d 05 h 48 m 46,1 s .

    Всемирное время определяется как местное среднее солнечное время на нулевом (Гринвичском) меридиане (Т о, UT - Universal Time). Так как в повседневной жизни местным временем пользоваться нельзя (так как в Колыбельке оно одно, а в Новосибирске другое (разные λ )), поэтому и утверждено было Конференцией по предложению канадского инженера-железнодорожника Сэнфорда Флеминга (8 февраля 1879 при выступлении в Канадском институте в г.Торонто) поясное время, разделив земной шар на 24 часовых зоны (по 360:24=15 о, по 7,5 о от центрального меридиана). Нулевой часовой пояс расположен симметрично относительно нулевого (гринвичского) меридиана. Нумерация поясов дается от 0 до 23 с запада на восток. Реальные границы поясов совмещены с административными границами районов, областей или государств. Центральные меридианы часовых поясов отстоят друг от друга ровно на 15 о (1 час), поэтому при переходе из одного часового пояса в другой время изменяется на целое число часов, а число минут и секунд не изменяется. Новые календарные сутки (и Новый год) начинаются на линии перемены даты (демаркационной линии ), проходящей в основном по меридиану 180 о восточной долготы вблизи северо-восточной границы Российской Федерации. Западнее линии перемены дат число месяца всегда на единицу больше, нежели к востоку от нее. При пересечении этой линии с запада на восток календарное число уменьшается на единицу, а при пересечении линии с востока на запад календарное число увеличивается на единицу, что исключает ошибку в счете времени при кругосветных путешествиях и перемещениях людей из Восточного в Западное полушария Земли.
    Поэтому Международной меридианной Конференцией (1884г, Вашингтон, США) в связи с развитием телеграфа и железнодорожного транспорта вводится:
    - начало суток с полуночи, а не с полудня, как это было.
    - начальный (нулевой) меридиан от Гринвича (Гринвичская обсерватория возле Лондона, основанная Дж. Флемстид в 1675г, через ось телескопа обсерватории).
    - система счета поясного времени
    Поясное время определяется по формуле: T n = T 0 + n , где Т 0 - всемирное время; n - номер часового пояса.
    Декретное время - поясное время, измененное на целое число часов правительственным распоряжением. Для России равно поясному, плюс 1 час.
    Московское время - декретное время второго часового пояса (плюс 1 час): Tм = T 0 + 3 (часа).
    Летнее время - декретное поясное время, изменяемое дополнительно на плюс 1 час по правительственному распоряжению на период летнего времени с целью экономии энергоресурсов. По примеру Англии, которая в 1908г впервые вводит переход на летнее время, сейчас 120 стран мира, в том числе и Российская Федерация осуществляет ежегодно переход на летнее время.
    Часовые пояса мира и России
    Далее следует кратко ознакомить учеников с астрономическими методами определения географических координат (долготы) местности. Вследствие вращения Земли разность между моментами наступления полдня или кульминаций (кульминация. Что это за явление?) звезд с известными экваториальными координатами в 2 пунктах равна разности географических долгот пунктов, что дает возможность определения долготы данного пункта из астрономических наблюдений Солнца и других светил и, наоборот, местного времени в любом пункте с известной долготой.
    Например: один из Вас находится в Новосибирске, второй в Омске (Москве). Кто из Вас раньше будет наблюдать верхнюю кульминацию центра Солнца? А почему? (замечание, имеется ввиду что Ваши часы идут по времени Новосибирска). Вывод - в зависимости от местонахождения на Земле (меридиана - географической долготы) кульминация любого светила наблюдается в разное время, то есть время связано с географической долготой или Т= UT+λ, а разность во времени для двух пунктов, расположенных на разных меридианах будет Т 1 -Т 2 = λ 1 - λ 2 . Географическая долгота (λ ) местности отсчитывается к востоку от "нулевого" (гринвичского) меридиана и численно равна промежутку времени между одноименными кульминациями одного и того же светила на гринвичском меридиане (UT) и в пункте наблюдения (Т ). Выражается в градусах или часах, минутах и секундах. Чтобы определить географическую долготу местности, необходимо определить момент кульминации какого-либо светила (обычно Солнца) с известными экваториальными координатами. Переведя с помощью специальных таблиц или калькулятора время наблюдений из среднего солнечного в звездное и зная по справочнику время кульминации этого светила на гринвичском меридиане, мы без труда определим долготу местности. Единственную сложность вычислений составляет точный перевод единиц времени из одной системы в другую. Момент кульминации можно не "караулить": достаточно определить высоту (зенитное расстояние) светила в любой точно зафиксированный момент времени, но вычисления тогда будут довольно сложными.
    Для измерения времени служат часы. От простейших, применяемые еще в древности, - это гномон - вертикальный шест в центре горизонтальной площадки с делениями, затем песочные, водные (клепсидры) и огневые, до механических, электронных и атомных. Еще более точный атомный (оптический) стандарт времени был создан в СССР 1978 году. Ошибка в 1 секунду происходит раз в 10 000 000 лет!

    Система счета времени в нашей стране
    1) С 1 июля 1919г вводится поясное время (декрет СНК РСФСР от 8.02.1919г)
    2) В 1930г устанавливается Московское (декретное) время 2-го часового пояса в котором находится Москва, переводом на один час вперед по сравнению с поясным временем (+3 к Всемирному или +2 к среднеевропейскому) с целью обеспечения в дневное время более светлой части суток (декрет СНК СССР от 16.06.1930г). Существенно изменяется распределение по часовым поясам краев и областей. Отменено в феврале 1991г и опять восстановлено с января 1992г.
    3) Этим же Декретом 1930г отменяется действующее с 1917г переход на летнее время (20 апреля и возврат 20 сентября).
    4) В 1981г возобновляется в стране переход на летнее время. Постановлением Совета Министров СССР от 24 октября 1980г «О порядке исчисления времени на территории СССР» вводится летние время переводом в 0 часов 1 апреля стрелок часов на час вперед, а 1 октября на час назад с 1981г. (В 1981г переход на летнее время введено в подавляющем большинстве развитых стран - 70, кроме Японии). В дальнейшем в СССР перевод стали делать в ближайшее к этим датам воскресенье. Постановление внесло ряд существенных изменений и утвердило заново составленный перечень административных территорий, отнесённых к соответствующим часовым поясам.
    5) В 1992г восстановлено Указам Президента, отмененное в феврале 1991г, декретное (Московское) время с 19 января 1992г с сохранением перевода на летнее время в последнее воскресенье марта в 2 часа ночи на час вперед, а на зимнее время в последнее воскресенье сентября в 3 часа ночи на час назад.
    6) В 1996г Постановлением Правительства РФ №511 от 23.04.1996г летнее время продлевается на один месяц и заканчивается теперь в последнее воскресенье октября. В Западной Сибири регионы, ранее находившиеся в зоне MSK+4, перешли на время MSK+3, присоединившись к Омскому времени: Новосибирская область 23 мая 1993 в 00:00, Алтайский край и Республика Алтай 28 мая 1995 в 4:00, Томская область 1 мая 2002 в 3:00, Кемеровская область 28 марта 2010 в 02:00. (разность со всемирным временем GMT остается 6 часов ).
    7) С 28 марта 2010 года при переходе на летнее время территория России стала располагаться в 9 часовых поясах (со 2-го по 11-й включительно, за исключением 4-го- Самарскую область и Удмуртия 28 марта 2010 года в 2 часа ночи перешли на московское время) с одинаковым временем в пределах каждого часового пояса. Границы часовых поясов проходят по границам субъектов Российской Федерации, каждый субъект входит в один пояс, за исключением Якутии, которая входит в 3 пояса (MSK+6, MSK+7, MSK+8), и Сахалинской области, которая входит в 2 пояса (MSK+7 на Сахалине и MSK+8 на Курильских островах).

    Итак, для нашей страны в зимнее время Т= UT+n+1 ч , а в летнее время Т= UT+n+2 ч

    Можно предложить выполнить дома лабораторную (практическую) работу: Лабораторная работа "Определение координат местности по наблюдениям Солнца"
    Оборудование : гномон; мел (колышки); "Астрономический календарь", тетрадь, карандаш.
    Порядок выполнения работы :
    1. Определение полуденной линии (направления меридиана).
    При суточном движении Солнца по небу тень от гномона постепенно меняет свое направление и длину. В истинный полдень она имеет наименьшую длину и показывает направление полуденной линии - проекции небесного меридиана на плоскость математического горизонта. Для определения полуденной линии необходимо в утренние часы отметить точку, в которую падает тень от гномона и провести через нее окружность, принимая гномон за ее центр. Затем следует подождать, когда тень от гномона вторично коснется линии окружности. Полученную дугу делят на две части. Линия, проходящая через гномон и середину полуденной дуги, будет полуденной линией.
    2. Определение широты и долготы местности по наблюдениям Солнца.
    Наблюдения начинаются незадолго до момента истинного полудня, наступление которого фиксируется в момент точного совпадения тени от гномона и полуденной линии по хорошо выверенным часам, идущим по декретному времени. Одновременно измеряют длину тени от гномона. По длине тени l в истинный полдень к моменту его наступления Т д по декретному времени с помощью простых расчетов определяют координаты местности. Предварительно из соотношения tg h ¤ =Н/l , где Н - высота гномона, находят высоту гномона в истинный полдень h ¤ .
    Широта местности вычисляется по формуле φ=90-h ¤ +d ¤ , где d ¤ - склонение Солнца. Для определения долготы местности используют формулу λ=12 h +n+Δ-D , где n - номер часового пояса, h - уравнение времени на данные сутки (определяется по данным "Астрономического календаря"). Для зимнего времени D = n + 1; для летнего времени D = n + 2.

    «Планетарий» 410,05 мб Ресурс позволяет установить на компьютер учителя или учащегося полную версию инновационного учебно-методического комплекса "Планетарий". "Планетарий" - подборка тематических статей - предназначены для использования учителями и учащимися на уроках физики, астрономии или естествознания в 10-11 классах. При установке комплекса рекомендуется использовать только английские буквы в именах папок.
    Демонстрационные материалы 13,08 мб Ресурс представляет собой демонстрационные материалы инновационного учебно-методического комплекса "Планетарий".
    Планетарий 2,67 мб Часы 154,3 кб
    Поясное время 374,3 кб
    Карта поясного времени 175,3 кб