§9 Экстремум функции двух переменных. Наибольшее и наименьшее значение функции С двумя переменными наибольшее и наименьшее

Определение 1.11 Пусть задана функция двух переменных z=z(x,y), (x,y) D . ТочкаM 0 (x 0 ;y 0 ) - внутренняя точка областиD .

Если в D присутствует такая окрестностьUM 0 точкиM 0 , что для всех точек

то точка M 0 называется точкой локального максимума. А само значениеz(M 0 ) - локальным максимумом.

А если же для всех точек

то точка M 0 называется точкой локального минимума функцииz(x,y) . А само значениеz(M 0 ) - локальным минимумом.

Локальный максимум и локальный минимум называются локальными экстремумами функции z(x,y) . На рис. 1.4 поясняется геометрический смысл локального максимума:M 0 - точка максимума, так как на поверхностиz =z (x,y) соответствующая ей точкаC 0 находится выше любой соседней точкиC (в этом локальность максимума).

Заметим, что на поверхности в целом есть точки (например, В ), которые находятся вышеC 0 , но эти точки (например,В ) не являются "соседними" с точкойC 0 .

В частности, точке В соответствует понятие глобального максимума:

Аналогично определяется и глобальный минимум:

Нахождение глобальных максимумов и минимумов будет рассмотрено в п.1.10.

Теорема 1.3 (необходимые условия экстремума).

Пусть задана функция z =z (x,y), (x,y) D . ТочкаM 0 (x 0 ;y 0 D - точка локального экстремума.

Если в этой точке существуют z" x иz" y , то

Геометрическое доказательство "очевидно". Если в точке C 0 на (рис.1.4) провести касательную плоскость, то она "естественно" пройдет горизонтально, т. е. под углом к осиОх и к осиОу .

Тогда в соответствии с геометрическим смыслом частных производных (рис.1.3):

что и требовалось доказать.

Определение 1.12.

Если в точке M 0 выполняются условия (1.41), то она называется стационарной точкой функцииz (x,y) .

Теорема 1.4 (достаточные условия экстремума).

Пусть задана z =z (x,y), (x,y) D , которая имеет частные производные второго порядка в некоторой окрестности точкиM 0 (x 0 ,y 0 ) D . ПричемM 0 - стационарная точка (т. е. необходимые условия (1.41) выполнены). Вычислим:

Доказательство теоремы использует темы (формула Тейлора функции нескольких переменных и теория квадратичных форм), которые в этом пособии не рассматриваются.

Пример 1.13.

Исследовать на экстремум:

1. Найдём стационарные точки, решая систему (1.41):

то есть найдены четыре стационарные точки. 2.

по теореме 1.4 в точке – минимум. Причём

по теореме 1.4 в точке

Максимум. Причём

§10 Наибольшее и наименьшее значения функции двух переменных в замкнутой области

Теорема 1.5 Пусть в замкнутой области D задана функция z=z(x,y) , имеющая непрерывные частные производные первого порядка. ГраницаГ областиD является кусочно гладкой (т. е. состоит из кусков "гладких на ощупь" кривых или прямых). Тогда в областиD функцияz(x,y) достигает своего наибольшегоM и наименьшегоm значений.

Без доказательства.

Можно предложить следующий план нахожденияM иm . 1. Строим чертёж, выделяем все части границы областиD и находим все "угловые" точки границы. 2. Находим стационарные точки внутриD . 3. Находим стационарные точки на каждой из границ. 4. Вычисляем во всех стационарных и угловых точках, а затем выбираем наибольшееM и наименьшееm значения.

Пример 1.14 Найти наибольшее M и наименьшееm значения функцииz = 4x2-2xy+y2-8x в замкнутой областиD , ограниченной:x = 0, y = 0, 4x+3y=12 .

1. Построим область D (рис. 1.5) на плоскостиОху .

Угловые точки: О (0; 0), В (0; 4), А (3; 0) .

Граница Г областиD состоит из трёх частей:

2. Найдём стационарные точки внутри области D :

3. Стационарные точки на границах l 1 , l 2 , l 3 :

4. Вычисляем шесть значений:

Из полученных шести значений выбираем наибольшее и наименьшее.


С практической точки зрения наибольший интерес представляет использование производной для нахождения наибольшего и наименьшего значения функции. С чем это связано? Максимизация прибыли, минимизация издержек, определение оптимальной загрузки оборудования... Другими словами, во многих сферах жизни приходится решать задачи оптимизации каких-либо параметров. А это и есть задачи на нахождение наибольшего и наименьшего значения функции.

Следует отметить, что наибольшее и наименьшее значение функции обычно ищется на некотором интервале X , который является или всей областью определения функции или частью области определения. Сам интервал X может быть отрезком , открытым интервалом , бесконечным промежутком .

В этой статье мы будем говорить о нахождении наибольшего и наименьшего значений явно заданной функции одной переменной y=f(x) .

Навигация по странице.

Наибольшее и наименьшее значение функции - определения, иллюстрации.

Кратко остановимся на основных определениях.

Наибольшим значением функции , что для любого справедливо неравенство .

Наименьшим значением функции y=f(x) на промежутке X называют такое значение , что для любого справедливо неравенство .

Эти определения интуитивно понятны: наибольшее (наименьшее) значение функции – это самое большое (маленькое) принимаемое значение на рассматриваемом интервале при абсциссе .

Стационарные точки – это значения аргумента, при которых производная функции обращается в ноль.

Для чего нам стационарные точки при нахождении наибольшего и наименьшего значений? Ответ на этот вопрос дает теорема Ферма. Из этой теоремы следует, что если дифференцируемая функция имеет экстремум (локальный минимум или локальный максимум) в некоторой точке, то эта точка является стационарной. Таким образом, функция часто принимает свое наибольшее (наименьшее) значение на промежутке X в одной из стационарных точек из этого промежутка.

Также часто наибольшее и наименьшее значение функция может принимать в точках, в которых не существует первая производная этой функции, а сама функция определена.

Сразу ответим на один из самых распространенных вопросов по этой теме:"Всегда ли можно определить наибольшее (наименьшее) значение функции"? Нет, не всегда. Иногда границы промежутка X совпадают с границами области определения функции или интервал X бесконечен. А некоторые функции на бесконечности и на границах области определения могут принимать как бесконечно большие так и бесконечно малые значения. В этих случаях ничего нельзя сказать о наибольшем и наименьшем значении функции.

Для наглядности дадим графическую иллюстрацию. Посмотрите на рисунки – и многое прояснится.

На отрезке


На первом рисунке функция принимает наибольшее (max y ) и наименьшее (min y ) значения в стационарных точках, находящихся внутри отрезка [-6;6] .

Рассмотрим случай, изображенный на втором рисунке. Изменим отрезок на . В этом примере наименьшее значение функции достигается в стационарной точке, а наибольшее - в точке с абсциссой, соответствующей правой границе интервала.

На рисунке №3 граничные точки отрезка [-3;2] являются абсциссами точек, соответствующих наибольшему и наименьшему значению функции.

На открытом интервале


На четвертом рисунке функция принимает наибольшее (max y ) и наименьшее (min y ) значения в стационарных точках, находящихся внутри открытого интервала (-6;6) .

На интервале , о наибольшем значении никаких выводов сделать нельзя.

На бесконечности


В примере, представленном на седьмом рисунке, функция принимает наибольшее значение (max y ) в стационарной точке с абсциссой x=1 , а наименьшее значение (min y ) достигается на правой границе интервала. На минус бесконечности значения функции асимптотически приближаются к y=3 .

На интервале функция не достигает ни наименьшего, ни наибольшего значения. При стремлении к x=2 справа значения функции стремятся к минус бесконечности (прямая x=2 является вертикальной асимптотой), а при стремлении абсциссы к плюс бесконечности, значения функции асимптотически приближаются к y=3 . Графическая иллюстрация этого примера приведена на рисунке №8.

Алгоритм нахождения наибольшего и наименьшего значения непрерывной функции на отрезке .

Запишем алгоритм, позволяющий находить наибольшее и наименьшее значение функции на отрезке.

  1. Находим область определения функции и проверяем, содержится ли в ней весь отрезок .
  2. Находим все точки, в которых не существует первая производная и которые содержатся в отрезке (обычно такие точки встечаются у функций с аргументом под знаком модуля и у степенных функций с дробно-рациональным показателем). Если таких точек нет, то переходим к следующему пункту.
  3. Определяем все стационарные точки, попадающие в отрезок . Для этого, приравниваем ее к нулю, решаем полученное уравнение и выбираем подходящие корни. Если стационарных точек нет или ни одна из них не попадает в отрезок, то переходим к следующему пункту.
  4. Вычисляем значения функции в отобранных стационарных точках (если такие имеются), в точках, в которых не существует первая производная (если такие имеются), а также при x=a и x=b .
  5. Из полученных значений функции выбираем наибольшее и наименьшее - они и будут искомыми наибольшим и наименьшим значениями функции соответственно.

Разберем алгоритм при решении примера на нахождение наибольшего и наименьшего значения функции на отрезке.

Пример.

Найти наибольшее и наименьшее значение функции

  • на отрезке ;
  • на отрезке [-4;-1] .

Решение.

Областью определения функции является все множество действительных чисел, за исключением нуля, то есть . Оба отрезка попадают в область определения.

Находим производную функции по :

Очевидно, производная функции существует во всех точках отрезков и [-4;-1] .

Стационарные точки определим из уравнения . Единственным действительным корнем является x=2 . Эта стационарная точка попадает в первый отрезок .

Для первого случая вычисляем значения функции на концах отрезка и в стационарной точке, то есть при x=1 , x=2 и x=4 :

Следовательно, наибольшее значение функции достигается при x=1 , а наименьшее значение – при x=2 .

Для второго случая вычисляем значения функции лишь на концах отрезка [-4;-1] (так как он не содержит ни одной стационарной точки):

Решение.

Начнем с области определения функции. Квадратный трехчлен в знаменателе дроби не должен обращаться в ноль:

Легко проверить, что все интервалы из условия задачи принадлежат области определения функции.

Продифференцируем функцию:

Очевидно, производная существует на всей области определения функции.

Найдем стационарные точки. Производная обращается в ноль при . Эта стационарная точка попадает в интервалы (-3;1] и (-3;2) .

А теперь можно сопоставить полученные в каждом пункте результаты с графиком функции. Синими пунктирными линиями обозначены асимптоты.

На этом можно закончить с нахождением наибольшего и наименьшего значения функции. Алгоритмы, разобранные в этой статье, позволяют получить результаты при минимуме действий. Однако бывает полезно сначала определить промежутки возрастания и убывания функции и только после этого делать выводы о наибольшем и наименьшем значении функции на каком-либо интервале. Это дает более ясную картину и строгое обоснование результатов.

Функции нескольких переменных

1. Основные определения

Определение 1. Соответствие, которое каждой паре (x; y) значений переменных x и y, принадлежащей некоторому множеству пар D, сопоставляет одно и только одно число zÎR, называется функцией двух переменных, определенной на множестве D со значениями в R. При этом пишут z = f(x;y). D = D(f) – область определения функции f.

2. Частные и полное приращения функции двух переменных

Если в функции z = f(x; y) двух переменных x и y зафиксировать значение одной из них, например y = y 0 , то получим функцию z = f(x; y 0), зависящую от одной переменной х.

Аналогично, если зафиксировать переменную x = x 0 , получим функцию z = f(x 0 ; y) одной переменной у.

Определение 2. Величина D x z = f(x 0 +Dx; y 0) - f(x 0 ; y 0) называется частным приращением функции z = f(x; y) в точке (x 0 ; y 0) по аргументу х.

Определение 3. Величина D y z = f(x 0 ; y 0 +Dy) - f(x 0 ; y 0) называется частным приращением функции z = f(x; y) в точке (x 0 ; y 0) по аргументу y.

Определение 4. Величина Dz = f(x 0 +Dx; y 0 +Dy) - f(x 0 ; y 0) называется полным приращением функции z = f(x; y) в точке (x 0 ; y 0).

3. Частные производные функции двух переменных

Пусть дана функция z = f(x; y) двух независимых переменных x и y. Фиксируя одну из них, например, полагая у = const, приходим к функции одной переменной x. Тогда можно ввести понятие производной полученной функции по x, которую обозначим . Согласно определению производной функции одной переменной имеем:

Определение 5. Предел отношения частного приращения D x z функции z=f(x; y) по переменной x к приращению Dx переменной x при Dx, стремящимся к нулю, называется частной производной функции по x и обозначается ; ;

Аналогично определяется и обозначается частная производная функции z = f(x; y) по переменной y.

Пример 1. Найти частные производные функций:

1. f(x; y) = x 3 + x 2 y 2 + y 3 + 3;

2. z = x y + y x .

Решение

1. Полагая y = const, и считая при этом x независимой переменной, найдем

Аналогично при x = const, получим .

2. При y = const

;

при x = const

Все сказанное можно распространить на функции любого числа переменных.

Пример 2. Найти частные производные функции



u = f(x; y; z) = cos(x 2 + y 2 + z 2).

Решение

Sin(x 2 + y 2 + z 2) × 2x, y = const, z = const;

Sin(x 2 + y 2 + z 2) × 2y, x = const, z = const;

Sin(x 2 + y 2 + z 2) × 2z, x = const, y = const.

Поскольку частные производные от функции нескольких переменных также являются, вообще говоря, функциями нескольких переменных, то для них можно также вычислять частные производные. Эти производные называют частными производными высших порядков .

Например, для функции f(x; y) двух переменных имеются следующие типы производных второго порядка:

- вторая частная производная по x;

и = - смешанные частные производные

- вторая частная производная по у.

4. Полный дифференциал функции двух переменных

Определение 6. Полным дифференциалом функции z=f(x;y) двух переменных x и y называется главная часть полного приращения Dz, линейная относительно приращений аргументов Dx и Dy.

C учетом того, что Dx = dx и Dy = dy полный дифференциал функции z = f(x; y) вычисляется по формуле

Пример 3. Вычислить полный дифференциал функции

z = ln (x 2 + y 2).

Решение . Найдем частные производные и данной функции

После их подстановки в формулу (3.5) получим

dz =

Найти частные производные функций

284. z = x 2 + 2xy + y 2 + 5 285. z = (x + y) 3

286. z = 287. z =

288. z = x 3 y - y 3 x 289. z = 2y

290. z = x y ln(x + y) 291. z = ln

292. z = ln + ln x·y 293. z =

294. z = e y/x – e x/y 295. z = x y + sin

296. z = sin(x 2 y + xy 2) 297. z = y x + arctg

Найти частные производные второго порядка

298. z = x 4 + 4x 2 y 3 + 7xy + 1 299. z = x 2 y

300. z = 4x 3 + 3x 2 y + 3xy 2 – y 3 301. z = xy + sin(x + y)

302. z = sin x cos y 303. z =

304. z = xe y 305. z = x + y +

306. z = x 2y 307. z = ln(x + e xy)

Проверить, что

308. z = 309. z = ln(x - 2y)

310. z = 311. z = x 2 sin

312. z = 313. z = arctg

Найти полный дифференциал функций

314. z = xy 3 - 3x 2 y 2 + 2y 4 +1 315. z = 3x 2 y 5

316. z = sin(x 2 + y 2) 317. z = x y

318. z = e xy 319. z = e x cos y

320. z = e y cos x 321. z = cos + sin

5. Экстремумы функции двух переменных

Основные определения

Определение 1. Точка М(x 0 ; у 0) называется точкой максимума (минимума) функции z = f(x; y), если существует окрестность точки М, такая, что для всех точек (x; y) из этой окрестности выполняется неравенство:

f(x 0 ; y 0) ³ f(x; y), .

Теорема 1 (необходимое условие существования экстремума) . Если дифференцируемая функция z = f(x; y) достигает экстремума в точке М(x 0 ; y 0), то ее частные производные первого порядка в этой точке равны нулю, т.е. ;

Точки, в которых частные производные равны нулю, называются стационарными иликритическими точками.

Теорема 2 (достаточное условие существования экстремума)

Пусть функция z = f(x; y):

а) определена в некоторой окрестности точки (x 0 ; y 0), в которой и ;

б) имеет в этой точке непрерывные частные производные второго порядка

;

Тогда, если D = АС - B 2 > 0, то в точке (x 0 ; y 0) функция z = f(x; y) имеет экстремум, причем, если А < 0 (или С < 0) – максимум, если А > 0 (или С > 0) – минимум. В случае D = АС - В 2 < 0, функция z = f(x; y) экстремума не имеет. Если D = AC - B 2 = 0, то требуется дальнейшее исследование (сомнительный случай).

Пример 1. Найти экстремум функции z = x 2 + xy + y 2 - 3x - 6y.

Решение . Найдем частные производные первого порядка:

Воспользуемся необходимым условием существования экстремума:

Решая систему уравнений, находим координаты x и y стационарных точек: x = 0; y = 3, т. е. М(0; 3).

Вычислим частные производные второго порядка и найдем их значения в точке М.

А = = 2; С = = 2;

Составим дискриминант D = АС - В 2 = 2 × 2 - 1 > 0, A = 2 > 0. Следовательно, в точке М(0; 3) заданная функция имеет минимум. Значение функции в этой точке z min = -9.

Найти экстремумы функций

322. z = x 2 + y 2 + xy - 4x - 5y 323. z = y 3 - x 3 - 3xy

324. z = x 2 - 2xy + 4y 3 325. z = - y 2 - x + 6y

326. z = x y (1 - x - y) 327. z = 2xy - 4x - 2y

328. z = e - x/2 (x + y 2) 329. z = x 3 + 8y 3 - 6xy + 1

330. z = 3x 2 y - x 3 - y 4 331. z = 3x + 6y - x 2 - xy + y 2

Наибольшее и наименьшее значения функции двух переменных

В замкнутой области

Для того, чтобы найти наибольшее и наименьшее значения функции в замкнутой области, надо:

1) найти критические точки, расположенные в данной области, и вычислить значения функции в этих точках;

2) найти критические точки на границе области и вычислить наибольшее и наименьшее значения функций в них;

3) из всех найденных значений выбрать наибольшее и наименьшее.

Пример 2. Найти наибольшее и наименьшее значения функции z = в круге x 2 + y 2 £ 1.

Решение . Найдем координаты критических точек, расположенных внутри рассматриваемой области, для чего вычислим частные производные первого порядка функции z и приравняем их к нулю.

откуда x = 0, y = 0 и, следовательно, М(0; 0) – критическая точка.

Вычислим значение функции z в точке М(0; 0): z(0; 0) = 2.

Найдем критические точки на границе области - окружности, заданной уравнением x 2 + y 2 = 1. Подставляя у 2 = 1 - x 2 в функцию z = z(x; y), получим функцию одной переменной

z = ;

причем xÎ[-1; 1].

Вычислив производную и приравняв ее нулю, получим критические точки на границе области x 1 = 0, x 2 = , x 3 =

Найдем значение функции z(x) = в критических точках и на концах отрезка [-1; 1]: z(0) = ; = ; ; z(-1) = ; z(1) =

Выберем наибольшее и наименьшее среди значений функции z в критических точках, расположенных внутри и на границе круга.

Итак, z наиб. = z(0; 0) = 2

z наим. = z

Условный экстремум

Определение 2. Условным экстремумом функции z = f(x; y) называется экстремум этой функции, достигнутый при условии, что переменные x и y связаны уравнением j(x; y) = 0 (уравнение связи). , y = .

Таким образом, гипотенуза имеет наименьшее значение, если катеты треугольника равны между собой.

Найти наибольшее и наименьшее значения функций:

332. z = x 2 - xy + y 2 - 4x в замкнутой области, ограниченной прямыми x = 0, y = 0, 2x + 3y - 12 = 0.

333. z = xy + x + y в квадрате, ограниченном прямыми x = 1, x = 2, y = 2, y = 3.

334. z = x 2 + 3y 2 + x - y в треугольнике, ограниченном прямыми x = 1, y = 1, x + y = 1.

335. z = sin x + sin y + sin (x + y) в области 0 £ x £ , 0 £ y £ .

336. z = xy в круге x 2 + y 2 £ 1.

337. z = 1 - x 2 - y 2 в круге (x - 1) 2 + (y - 1) 2 £ 1.

338. z = x 2 + y 2 в круге (x - ) 2 + (y - ) 2 £ 9.

339. Найти экстремум функции z = x 2 + y 2 , если x и y связаны уравнением = 1.

340. Из всех треугольников, имеющих периметр Р, найти наибольший по площади.

341. Из всех прямоугольников с заданной площадью S найти такой, периметр которого имеет наименьшее значение.

342. Определить размеры открытого бассейна объемом V, имеющего наименьшую поверхность.

343. Найти размеры прямоугольного параллелепипеда, имеющего при данной полной поверхности S максимальный объем.

344. Определить размеры цилиндра наибольшего объема при условии, что его полная поверхность S = 6p.


* Под понятиями выпуклость и вогнутость графика функции следует понимать выпуклость вверх и вниз соответственно.

§ Экстремумы, Наибольшее и наименьшее значения функций нескольких переменных - страница №1/1

§ 8. Экстремумы, Наибольшее и наименьшее значения функций нескольких переменных.

1. Экстремумы функций нескольких переменных.



плоскости
,
– точка этой области.

Точка
называется точкой максимума функции
, если для любой точки

выполняется неравенство


.

Аналогично точка
называется точкой минимума функции
, если для любой точки
из некоторой окрестности точки
выполняется неравенство


.

Замечания . 1) По смыслу определений функция
должна быть определена в некоторой окрестности точки
. Т.е. точкой максимума и точкой минимума функции
могут быть только внутренние точки области
.

2) Если существует окрестность точки
, в которой для любой точки
отличной от
выполняется неравенство

(

), то точку
называют точкой строгого максимума (соответственно точкой строгого минимума ) функции
. В связи с этим, определенные выше точки максимума и минимума называют иногда точками нестрого максимума и минимума.


Точки максимума и минимума функции называются ее точками экстремума . Значения функции в точках максимума и минимума называются соответственно максимумами и минимумами , или, короче, экстремумами этой функции.

Понятия экстремумов носят локальный характер: значение функции в точке
сравнивается со значениями функции в достаточно близких точках. В данной области функция может совсем не иметь экстремумов, а может иметь несколько минимумов, несколько максимумов и даже бесчисленное множество и тех и других. При этом некоторые минимумы могут оказаться больше некоторых ее максимумов. Не следует смешивать максимумы и минимумы функции с ее наибольшим и наименьшим значениями.

Найдем необходимое условие экстремума. Пусть, например,
– точка максимума функции
. Тогда по определению существует gif" align=absmiddle width="17px" height="18px">-окрестность точки
такая, что
для любой точки
из этой окрестности. В частности,

(1)

где
,
, и

(2)

где
,
. Но (1) означает, что функция одной переменной
имеет в точке максимум или является на интервале
постоянной. Следовательно,

или
– не существует,


или
– не существует.

Аналогично из (2) получаем, что

или
– не существует.

Таким образом, справедлива следующая теорема.

ТЕОРЕМА 8.1. (необходимые условия экстремума). Если функция
в точке
имеет экстремум, то в этой точке либо обе ее частные производные первого порядка равны нулю, либо хотя бы одна из этих частных производных не существует.

Геометрически теорема 8.1 означает, что если
– точка экстремума функции
, то касательная плоскость к графику этой функции в точке либо параллельна плоскости
, либо вообще не существует. Чтобы убедиться в этом, достаточно вспомнить, как найти уравнение касательной плоскости к поверхности (см. формулу (4.6)).

Точки, удовлетворяющие условиям теоремы 8.1, называются критическими точками функции
. Также как и для функции одной переменной, необходимые условия экстремума не является достаточным. Т.е. не всякая критическая точка функции будет ее точкой экстремума.

ПРИМЕР. Рассмотрим функцию
. Точка
является для этой функции критической, так как в этой точке обе ее частные производные первого порядка
и
равны нулю. Однако она не будет точкой экстремума. Действительно,
, но в любой окрестности точки
есть точки, в которых функция принимает положительные значения и точки, в которых функция принимает отрицательные значения. В этом легко убедиться, если построить график функции – гиперболический параболоид.

Для функции двух переменных наиболее удобные достаточные условия дает следующая теорема.

ТЕОРЕМА 8.2. (достаточные условия экстремума функции двух переменных). Пусть
– критическая точка функции
и в некоторой окрестности точки
функция имеет непрерывные частные производные до второго порядка включительно. Обозначим

,
,
.

Тогда 1) если
, то точка
не является точкой экстремума;



Если с помощью теоремы 8.2 исследовать критическую точку
не удалось (т.е. если
или функция вообще не имеет в окрестности точки
непрерывных частных производных нужного порядка), ответ на вопрос о наличии в точке
экстремума даст знак приращения функции в этой точке.

Действительно, из определения следует, что если функция
имеет в точке
строгий максимум, то

для всех точек
из некоторой окрестности точки
, или, иначе

при всех достаточно малых
и
. Аналогично, если
– точка строгого минимума, то при всех достаточно малых
и
будет выполняться неравенство
.

Таким образом, чтобы выяснить, является ли критическая точка
точкой экстремума, необходимо исследовать приращение функции в этой точке. Если при всех достаточно малых
и
оно будет сохранять знак, то в точке
функция имеет строгий экстремум (минимум, если
, и максимум, если
).

Замечание . Правило остается верным и для нестрого экстремума, но с поправкой, что при некоторых значениях
и
приращение функции будет нулевым
ПРИМЕР. Найти экстремумы функций:

1)
; 2)
.


1) Функция

и
тоже существуют всюду. Решая систему уравнений
,
найдем две критические точки
и
.

Для исследования критических точек применим теорему 8.2. Имеем:

,
,
.

Исследуем точку
:

,
,
,


;
.

Следовательно, в точке
данная функция имеет минимум, а именно
.

Исследуем критическую точку
:

,
,
,


.

Следовательно, вторая критическая точка не является точкой экстремума функции.


2) Функция
определена всюду. Ее частные производные первого порядка
и тоже существуют всюду. Решая систему уравнений
,
найдем единственную критическую точку
.

Для исследования критической точки применим теорему 8.2. Имеем:

,
,
,

,
,
,

.

Установить наличие или отсутствие экстремума в точке
с помощью теоремы 8.2 не удалось.

Исследуем знак приращения функции в точке
:

Если
, то
;

если
, то
.

Поскольку
не сохраняет знак в окрестности точки
, то в этой точке функция не имеет экстремума.


Определения максимума и минимума и необходимые условия экстремума легко переносятся на функции трех и более числа переменных. Достаточные условия экстремума для функции (
) переменных ввиду их сложности в данном курсе не рассматриваются. Определять характер критических точек в этом случае мы будем по знаку приращения функции.

2. Наибольшее и наименьшее значения функции.

Пусть функция двух переменных
определена в некоторой области
плоскости
,
,
– точки этой области. Значение функции в точке
называется наибольшим , если для любой точки
из области
выполняется неравенство


.

Аналогично значение функции в точке
называется наименьшим , если для любой точки
из области
выполняется неравенство

.

Ранее, мы уже говорили, что если функция непрерывна, а область
– замкнута и ограничена, то функция принимает в этой области свое наибольшее и наименьшее значения. При этом точки
и
могут лежать как внутри области
, так и на ее границе. Если точка
(или
) лежит внутри области
, то это будет точка максимума (минимума) функции
, т.е. критическая точка функции внутри области
. Поэтому для нахождения наибольшего и наименьшего значений функции
в области
нужно:
.

Пусть функция $z=f(x,y)$ определена и непрерывна в некоторой ограниченной замкнутой области $D$. Пусть в этой области заданная функция имеет конечные частные производные первого порядка (за исключением, быть может, конечного количества точек). Чтобы найти наибольшее и наименьшее значения функции двух переменных в данной замкнутой области требуется выполнить три шага простого алгоритма.

Алгоритм поиска наибольшего и наименьшего значений функции $z=f(x,y)$ в замкнутой области $D$.

  1. Найти критические точки функции $z=f(x,y)$, принадлежащие области $D$. Вычислить значения функции в критических точках.
  2. Исследовать поведение функции $z=f(x,y)$ на границе области $D$, найдя точки возможного наибольшего и наименьшего значений. Вычислить значения функции в полученных точках.
  3. Из значений функции, полученных в предыдущих двух пунктах, выбрать наибольшее и наименьшее.

Что такое критические точки? показать\скрыть

Под критическими точками подразумевают такие точки, в которых обе частные производные первого порядка равны нулю (т.е. $\frac{\partial z}{\partial x}=0$ и $\frac{\partial z}{\partial y}=0$) или хотя бы одна частная производная не существует.

Часто точки, в которых частные производные первого порядка равны нулю, именуют стационарными точками . Таким образом, стационарные точки - есть подмножество критических точек.

Пример №1

Найти наибольшее и наименьшее значения функции $z=x^2+2xy-y^2-4x$ в замкнутой области, ограниченной линиями $x=3$, $y=0$ и $y=x+1$.

Будем следовать указанному выше , но для начала разберёмся с чертежом заданной области, которую обозначим буквой $D$. Нам заданы уравнения трёх прямых, кои эту область ограничивают. Прямая $x=3$ проходит через точку $(3;0)$ параллельно оси ординат (оси Oy). Прямая $y=0$ - это уравнение оси абсцисс (оси Ox). Ну, а для построения прямой $y=x+1$ найдём две точки, через которые и проведём данную прямую. Можно, конечно, подставить вместо $x$ парочку произвольных значений. Например, подставляя $x=10$, получим: $y=x+1=10+1=11$. Мы нашли точку $(10;11)$, лежащую на прямой $y=x+1$. Однако лучше отыщем те точки, в которых прямая $y=x+1$ пересекается с линиями $x=3$ и $y=0$. Почему это лучше? Потому, что мы одним выстрелом уложим пару зайцев: получим две точки для построения прямой $y=x+1$ и заодно выясним, в каких точках эта прямая пересекает иные линии, ограничивающие заданную область. Прямая $y=x+1$ пересекает прямую $x=3$ в точке $(3;4)$, а прямую $y=0$ - в точке $(-1;0)$. Дабы не загромождать ход решения вспомогательными пояснениями, то вопрос о получении этих двух точек вынесу в примечание.

Как были получены точки $(3;4)$ и $(-1;0)$? показать\скрыть

Начнём с точки пересечения прямых $y=x+1$ и $x=3$. Координаты искомой точки принадлежат и первой, и второй прямой, поэтому для нахождения неизвестных координат нужно решить систему уравнений:

$$ \left \{ \begin{aligned} & y=x+1;\\ & x=3. \end{aligned} \right. $$

Решение такой системы тривиально: подставляя $x=3$ в первое уравнение будем иметь: $y=3+1=4$. Точка $(3;4)$ и есть искомая точка пересечения прямых $y=x+1$ и $x=3$.

Теперь отыщем точку пересечения прямых $y=x+1$ и $y=0$. Вновь составим и решим систему уравнений:

$$ \left \{ \begin{aligned} & y=x+1;\\ & y=0. \end{aligned} \right. $$

Подставляя $y=0$ в первое уравнение, получим: $0=x+1$, $x=-1$. Точка $(-1;0)$ и есть искомая точка пересечения прямых $y=x+1$ и $y=0$ (оси абсцисс).

Всё готово для построения чертежа, который будет иметь такой вид:

Вопрос примечания кажется очевидным, ведь всё видно по рисунку. Однако стоит помнить, что рисунок не может служить доказательством. Рисунок - лишь иллюстрация для наглядности.

Наша область была задана с помощью уравнений прямых, которые её ограничивают. Очевидно, что эти прямые определяют треугольник, не так ли? Или не совсем очевидно? А может, нам задана иная область, ограниченная теми же прямыми:

Конечно, в условии сказано, что область замкнута, поэтому показанный рисунок неверен. Но чтобы избегать подобных двусмысленностей, области лучше задавать неравенствами. Нас интересует часть плоскости, расположенная под прямой $y=x+1$? Ок, значит, $y ≤ x+1$. Наша область должна располагаться над прямой $y=0$? Отлично, значит $y ≥ 0$. Кстати, два последних неравенства легко объединяются в одно: $0 ≤ y ≤ x+1$.

$$ \left \{ \begin{aligned} & 0 ≤ y ≤ x+1;\\ & x ≤ 3. \end{aligned} \right. $$

Эти неравенства и задают область $D$, причём задают её однозначно, не допуская никаких двусмысленностей. Но как это поможет нам в том вопросе, что указан в начале примечания? Ещё как поможет:) Нам нужно проверить, принадлежит ли точка $M_1(1;1)$ области $D$. Подставим $x=1$ и $y=1$ в систему неравенств, которые эту область определяют. Если оба неравенства будут выполнены, то точка лежит внутри области. Если хотя бы одно из неравенств будет не выполнено, то точка области не принадлежит. Итак:

$$ \left \{ \begin{aligned} & 0 ≤ 1 ≤ 1+1;\\ & 1 ≤ 3. \end{aligned} \right. \;\; \left \{ \begin{aligned} & 0 ≤ 1 ≤ 2;\\ & 1 ≤ 3. \end{aligned} \right. $$

Оба неравенства справедливы. Точка $M_1(1;1)$ приналежит области $D$.

Теперь настал черёд исследовать поведение функции на границе области, т.е. переходим ко . Начнём с прямой $y=0$.

Прямая $y=0$ (ось абсцисс) ограничивает область $D$ при условии $-1 ≤ x ≤ 3$. Подставим $y=0$ в заданную функцию $z(x,y)=x^2+2xy-y^2-4x$. Полученную в результате подстановки функцию одной переменной $x$ обозначим как $f_1(x)$:

$$ f_1(x)=z(x,0)=x^2+2x\cdot 0-0^2-4x=x^2-4x. $$

Теперь для функции $f_1(x)$ нужно найти наибольшее и наименьшее значения на отрезке $-1 ≤ x ≤ 3$. Отыщем производную этой функции и приравняем её к нулю:

$$ f_{1}^{"}(x)=2x-4;\\ 2x-4=0; \; x=2. $$

Значение $x=2$ принадлежит отрезку $-1 ≤ x ≤ 3$, поэтому к списку точек добавим ещё и $M_2(2;0)$. Кроме того, вычислим значения функции $z$ на концах отрезка $-1 ≤ x ≤ 3$, т.е. в точках $M_3(-1;0)$ и $M_4(3;0)$. Кстати, если бы точка $M_2$ не принадлежала рассматриваемому отрезку, то, разумеется, значение функции $z$ в ней вычислять не было бы надобности.

Итак, вычислим значения функции $z$ в точках $M_2$, $M_3$, $M_4$. Можно, конечно, подставлять координаты данных точек в исходное выражение $z=x^2+2xy-y^2-4x$. Например, для точки $M_2$ получим:

$$z_2=z(M_2)=2^2+2\cdot 2\cdot 0-0^2-4\cdot 2=-4.$$

Однако вычисления можно немного упростить. Для этого стоит вспомнить, что на отрезке $M_3M_4$ имеем $z(x,y)=f_1(x)$. Распишу это подробно:

\begin{aligned} & z_2=z(M_2)=z(2,0)=f_1(2)=2^2-4\cdot 2=-4;\\ & z_3=z(M_3)=z(-1,0)=f_1(-1)=(-1)^2-4\cdot (-1)=5;\\ & z_4=z(M_4)=z(3,0)=f_1(3)=3^2-4\cdot 3=-3. \end{aligned}

Разумеется, что в столь подробных записях обычно нет нужды, и все вычисления в дальнейшем станем записывать покороче:

$$z_2=f_1(2)=2^2-4\cdot 2=-4;\; z_3=f_1(-1)=(-1)^2-4\cdot (-1)=5;\; z_4=f_1(3)=3^2-4\cdot 3=-3.$$

Теперь обратимся к прямой $x=3$. Эта прямая ограничивает область $D$ при условии $0 ≤ y ≤ 4$. Подставим $x=3$ в заданную функцию $z$. В результате такой подстановки мы получим функцию $f_2(y)$:

$$ f_2(y)=z(3,y)=3^2+2\cdot 3\cdot y-y^2-4\cdot 3=-y^2+6y-3. $$

Для функции $f_2(y)$ нужно найти наибольшее и наименьшее значения на отрезке $0 ≤ y ≤ 4$. Отыщем производную этой функции и приравняем её к нулю:

$$ f_{2}^{"}(y)=-2y+6;\\ -2y+6=0; \; y=3. $$

Значение $y=3$ принадлежит отрезку $0 ≤ y ≤ 4$, поэтому к найденным ранее точкам добавим ещё и $M_5(3;3)$. Кроме того, нужно вычислить значение функции $z$ в точках на концах отрезка $0 ≤ y ≤ 4$, т.е. в точках $M_4(3;0)$ и $M_6(3;4)$. В точке $M_4(3;0)$ мы уже вычисляли значение $z$. Вычислим значение функции $z$ в точках $M_5$ и $M_6$. Напомню, что на отрезке $M_4M_6$ имеем $z(x,y)=f_2(y)$, поэтому:

\begin{aligned} & z_5=f_2(3)=-3^2+6\cdot 3-3=6; & z_6=f_2(4)=-4^2+6\cdot 4-3=5. \end{aligned}

И, наконец, рассмотрим последнюю границу области $D$, т.е. прямую $y=x+1$. Эта прямая ограничивает область $D$ при условии $-1 ≤ x ≤ 3$. Подставляя $y=x+1$ в функцию $z$, будем иметь:

$$ f_3(x)=z(x,x+1)=x^2+2x\cdot (x+1)-(x+1)^2-4x=2x^2-4x-1. $$

Вновь мы получили функцию одной переменной $x$. И вновь нужно найти наибольшее и наименьшее значения этой функции на отрезке $-1 ≤ x ≤ 3$. Отыщем производную функции $f_{3}(x)$ и приравняем её к нулю:

$$ f_{3}^{"}(x)=4x-4;\\ 4x-4=0; \; x=1. $$

Значение $x=1$ принадлежит отрезку $-1 ≤ x ≤ 3$. Если $x=1$, то $y=x+1=2$. Добавим к списку точек ещё и $M_7(1;2)$ и выясним, чему равно значение функции $z$ в этой точке. Точки на концах отрезка $-1 ≤ x ≤ 3$, т.е. точки $M_3(-1;0)$ и $M_6(3;4)$, были рассмотрены ранее, значение функции в них мы уже находили.

$$z_7=f_3(1)=2\cdot 1^2-4\cdot 1-1=-3.$$

Второй шаг решения закончен. Мы получили семь значений:

$$z_1=-2;\;z_2=-4;\;z_3=5;\;z_4=-3;\;z_5=6;\;z_6=5;\;z_7=-3.$$

Обратимся к . Выбирая наибольшее и наименьшее значения из тех чисел, что были получены в третьем пункте, будем иметь:

$$z_{min}=-4; \; z_{max}=6.$$

Задача решена, осталось лишь записать ответ.

Ответ : $z_{min}=-4; \; z_{max}=6$.

Пример №2

Найти наибольшее и наименьшее значения функции $z=x^2+y^2-12x+16y$ в области $x^2+y^2 ≤ 25$.

Сначала построим чертёж. Уравнение $x^2+y^2=25$ (это граничная линия заданной области) определяет окружность с центром в начале координат (т.е. в точке $(0;0)$) и радиусом 5. Неравенству $x^2+y^2 ≤ 25$ удовлетворяют все точки внутри и на упомянутой окружности.

Будем действовать по . Найдем частные производные и выясним критические точки.

$$ \frac{\partial z}{\partial x}=2x-12; \frac{\partial z}{\partial y}=2y+16. $$

Точек, в которых найденные частные производные не существуют, нет. Выясним, в каких точках обе частные производные одновременно равны нулю, т.е. найдём стационарные точки.

$$ \left \{ \begin{aligned} & 2x-12=0;\\ & 2y+16=0. \end{aligned} \right. \;\; \left \{ \begin{aligned} & x=6;\\ & y=-8. \end{aligned} \right. $$

Мы получили стационарную точку $(6;-8)$. Однако найденная точка не принадлежит области $D$. Это легко показать, даже не прибегая к помощи рисунка. Проверим, выполняется ли неравенство $x^2+y^2 ≤ 25$, которое определяет нашу область $D$. Если $x=6$, $y=-8$, то $x^2+y^2=36+64=100$, т.е. неравенство $x^2+y^2 ≤ 25$ не выполнено. Вывод: точка $(6;-8)$ не принадлежит области $D$.

Итак, внутри области $D$ нет критических точек. Переходим дальше, ко . Нам нужно исследовать поведение функции на границе заданной области, т.е. на окружности $x^2+y^2=25$. Можно, конечно, выразить $y$ через $x$, а потом подставить полученное выражение в нашу функцию $z$. Из уравнения окружности получим: $y=\sqrt{25-x^2}$ или $y=-\sqrt{25-x^2}$. Подставляя, например, $y=\sqrt{25-x^2}$ в заданную функцию, будем иметь:

$$ z=x^2+y^2-12x+16y=x^2+25-x^2-12x+16\sqrt{25-x^2}=25-12x+16\sqrt{25-x^2}; \;\; -5≤ x ≤ 5. $$

Дальнейшее решение будет полностью идентично исследованию поведения функции на границе области в предыдущем примере №1. Однако мне кажется более разумным в этой ситуации применить метод Лагранжа . Нас будет интересовать лишь первая часть этого метода. После применения первой части метода Лагранжа мы получим точки, в которых и исследуем функцию $z$ на предмет минимального и максимального значений.

Составляем функцию Лагранжа:

$$ F=z(x,y)+\lambda\cdot(x^2+y^2-25)=x^2+y^2-12x+16y+\lambda\cdot (x^2+y^2-25). $$

Находим частные производные функции Лагранжа и составляем соответствующую систему уравнений:

$$ F_{x}^{"}=2x-12+2\lambda x; \;\; F_{y}^{"}=2y+16+2\lambda y.\\ \left \{ \begin{aligned} & 2x-12+2\lambda x=0;\\ & 2y+16+2\lambda y=0;\\ & x^2+y^2-25=0. \end{aligned} \right. \;\; \left \{ \begin{aligned} & x+\lambda x=6;\\ & y+\lambda y=-8;\\ & x^2+y^2=25. \end{aligned} \right. $$

Для решения этой системы давайте сразу укажем, что $\lambda\neq -1$. Почему $\lambda\neq -1$? Попробуем подставить $\lambda=-1$ в первое уравнение:

$$ x+(-1)\cdot x=6; \; x-x=6; \; 0=6. $$

Полученное противоречие $0=6$ говорит о том, что значение $\lambda=-1$ недопустимо. Вывод: $\lambda\neq -1$. Выразим $x$ и $y$ через $\lambda$:

\begin{aligned} & x+\lambda x=6;\; x(1+\lambda)=6;\; x=\frac{6}{1+\lambda}. \\ & y+\lambda y=-8;\; y(1+\lambda)=-8;\; y=\frac{-8}{1+\lambda}. \end{aligned}

Полагаю, что тут становится очевидным, зачем мы специально оговаривали условие $\lambda\neq -1$. Это было сделано, чтобы без помех поместить выражение $1+\lambda$ в знаменатели. Т.е., чтобы быть уверенным, что знаменатель $1+\lambda\neq 0$.

Подставим полученные выражения для $x$ и $y$ в третье уравнение системы, т.е. в $x^2+y^2=25$:

$$ \left(\frac{6}{1+\lambda} \right)^2+\left(\frac{-8}{1+\lambda} \right)^2=25;\\ \frac{36}{(1+\lambda)^2}+\frac{64}{(1+\lambda)^2}=25;\\ \frac{100}{(1+\lambda)^2}=25; \; (1+\lambda)^2=4. $$

Из полученного равенства следует, что $1+\lambda=2$ или $1+\lambda=-2$. Отсюда имеем два значения параметра $\lambda$, а именно: $\lambda_1=1$, $\lambda_2=-3$. Соответственно, получим и две пары значений $x$ и $y$:

\begin{aligned} & x_1=\frac{6}{1+\lambda_1}=\frac{6}{2}=3; \; y_1=\frac{-8}{1+\lambda_1}=\frac{-8}{2}=-4. \\ & x_2=\frac{6}{1+\lambda_2}=\frac{6}{-2}=-3; \; y_2=\frac{-8}{1+\lambda_2}=\frac{-8}{-2}=4. \end{aligned}

Итак, мы получили две точки возможного условного экстремума, т.е. $M_1(3;-4)$ и $M_2(-3;4)$. Найдём значения функции $z$ в точках $M_1$ и $M_2$:

\begin{aligned} & z_1=z(M_1)=3^2+(-4)^2-12\cdot 3+16\cdot (-4)=-75; \\ & z_2=z(M_2)=(-3)^2+4^2-12\cdot(-3)+16\cdot 4=125. \end{aligned}

На следует выбрать наибольшее и наименьшее значения из тех, что мы получили на первом и втором шагах. Но в данном случае выбор невелик:) Имеем:

$$ z_{min}=-75; \; z_{max}=125. $$

Ответ : $z_{min}=-75; \; z_{max}=125$.