Объяснение решение квадратных неравенств. Как решать квадратные неравенства. Квадратные неравенства. средний уровень

Чтобы разобраться, как решать квадратные уравнения, нам потребуется разобраться, что же такое квадратичная функция, и какими свойствами она обладает.

Наверняка ты задавался вопросом, зачем вообще нужна квадратичная функция? Где применим её график (парабола)? Да стоит только оглядеться, и ты заметишь, что ежедневно в повседневной жизни сталкиваешься с ней. Замечал, как на физкультуре летит брошенный мяч? «По дуге»? Самым верным ответом будет «по параболе»! А по какой траектории движется струя в фонтане? Да, тоже по параболе! А как летит пуля или снаряд? Все верно, тоже по параболе! Таким образом, зная свойства квадратичной функции, можно будет решать многие практические задачи. К примеру, под каким углом необходимо кинуть мяч, чтобы обеспечить наибольшую дальность полёта? Или, где окажется снаряд, если запустить его под определённым углом? и т.д.

Квадратичная функция

Итак, давай разбираться.

К примеру, . Чему здесь равны, и? Ну, конечно, и!

А что, если, т.е. меньше нуля? Ну конечно, мы «грустим», а, значит, ветви будут направлены вниз! Давай посмотрим на графике.

На этом рисунке изображён график функции. Так как, т.е. меньше нуля, ветви параболы направлены вниз. Кроме того, ты, наверное, уже заметил, что ветви этой параболы пересекают ось, а значит, уравнение имеет 2 корня, а функция принимает как положительные и отрицательные значения!

В самом начале, когда мы давали определение квадратичной функции, было сказано, что и - некоторые числа. А могут ли они быть равны нулю? Ну конечно, могут! Даже открою еще больший секрет (который и не секрет вовсе, но упомянуть о нем стоит): на эти числа (и) вообще никакие ограничения не накладываются!

Ну что, давай посмотрим, что будет с графиками, если и равны нулю.

Как видно, графики рассматриваемых функций (и) сместились так, что их вершины находятся теперь в точке с координатами, то есть на пересечении осей и, на направлении ветвей это никак не отразилось. Таким образом, можно сделать вывод, что и отвечают за «передвижения» графика параболы по системе координат.

График функции касается оси в точке. Значит, уравнение имеет один корень. Таким образом, функция принимает значения больше либо равные нулю.

Придерживаемся той же логики с графиком функции. Он касается оси x в точке. Значит, уравнение имеет один корень. Таким образом, функция принимает значения меньше либо равные нулю, то есть.

Таким образом, чтобы определить знак выражения, первое, что необходимо сделать - это найти корни уравнения. Это нам очень пригодится.

Квадратное неравенство

Квадратное неравенство - это неравенство, состоящее из одной квадратичной функции. Таким образом, все квадратные неравенства сводятся к следующим четырём видам:

При решении таких неравенств нам пригодятся умения определять, где квадратичная функция больше, меньше, либо равна нулю. То есть:

  • если перед нами неравенство вида, то фактически задача сводится к тому, чтобы определить числовой промежуток значений, при котором парабола лежит выше оси.
  • если перед нами неравенство вида, то фактически задача сводится к тому, чтобы определить числовой промежуток значений x, при котором парабола лежит ниже оси.

Если неравенства нестрогие (и), то корни (координаты пересечений параболы с осью) включаются в искомый числовой промежуток, при строгих неравенствах - исключаются.

Это все достаточно формализовано, однако не надо отчаиваться и пугаться! Сейчас разберём примеры, и все станет на свои места.

При решении квадратных неравенств будем придерживаться приведённого алгоритма, и нас ждёт неизбежный успех!

Алгоритм Пример:
1) Запишем соответствующее неравенству квадратное уравнение (просто меняем знак неравенства на знак равенства «=»).
2) Найдём корни этого уравнения.
3) Отметим корни на оси и схематично покажем ориентацию ветвей параболы («вверх» или «вниз»)
4) Расставим на оси знаки, соответствующие знаку квадратичной функции: там, где парабола выше оси, ставим « », а там, где ниже - « ».
5) Выписываем интервал(ы), соответствующий « » или « », в зависимости от знака неравенства. Если неравенство нестрогое , корни входят в интервал, если строгое - не входят.

Разобрался? Тогда вперёд закреплять!

Ну что, получилось? Если возникли затруднения, то разбирайся в решениях.

Решение:

Выпишем интервалы, соответствующие знаку « », так как знак неравенства « ». Неравенство нестрогое, поэтому корни включаются в интервалы:

Запишем соответствующее квадратное уравнение:

Найдём корни данного квадратного уравнения:

Схематично отметим полученные корни на оси и расставим знаки:

Выпишем интервалы, соответствующие знаку « », так как знак неравенства « ». Неравенство строгое, поэтому корни не включаются в интервалы:

Запишем соответствующее квадратное уравнение:

Найдём корни данного квадратного уравнения:

данное уравнение имеет один корень

Схематично отметим полученные корни на оси и расставим знаки:

Выпишем интервалы, соответствующие знаку « », так как знак неравенства « ». При любом функция принимает неотрицательные значения. Так как неравенство нестрогое, то ответом будет.

Запишем соответствующее квадратное уравнение:

Найдём корни данного квадратного уравнения:

Схематично нарисуем график параболы и расставим знаки:

Выпишем интервалы, соответствующие знаку « », так как знак неравенства « ». При любом функция принимает положительные значения, следовательно, решением неравенства будет интервал:

КВАДРАТНЫЕ НЕРАВЕНСТВА. СРЕДНИЙ УРОВЕНЬ

Квадратичная функция.

Прежде чем говорить о теме «квадратные неравенства», вспомним что такое квадратичная функция и что из себя представляет её график.

Квадратичная функция - это функция вида,

Другими словами, это многочлен второй степени .

График квадратичной функции - парабола (помнишь, что это такое?). Её ветви направлены вверх, если "a) функция принимает только положительные значения при всех, а во втором () - только отрицательные:

В случае, когда у уравнения () ровно один корень (например, если дискриминант равен нулю), это значит, что график касается оси:

Тогда, аналогично предыдущему случаю, при функция неотрицательна при всех, а при - неположительна.

Так вот, мы ведь недавно уже научились определять, где квадратичная функция больше нуля, а где - меньше:

Если квадратное неравенство нестрогое , то корни входят в числовой промежуток, если строгое - не входят.

Если корень только один, - ничего страшного, будет везде один и тот же знак. Если корней нет, всё зависит только от коэффициента: если, то всё выражение больше 0, и наоборот.

Примеры (реши самостоятельно):

Ответы:

Корней нет, поэтому всё выражение в левой части принимает знак старшего коэффициента: при всех. А значит, решений неравенства нет.

Если квадратичная функция в левой части «неполная» - тем проще находить корни:

КВАДРАТНЫЕ НЕРАВЕНСТВА. КОРОТКО О ГЛАВНОМ

Квадратичная функция - это функция вида: ,

График квадратичной функции - парабола. Её ветви направлены вверх, если, и вниз, если:

  • Если требуется найти числовой промежуток, на котором квадратный трёхчлен больше нуля, то это числовой промежуток, где парабола лежит выше оси.
  • Если требуется найти числовой промежуток, на котором квадратный трёхчлен меньше нуля, то это числовой промежуток, где парабола лежит ниже оси.

Виды квадратных неравенств:

Все квадратные неравенства сводятся к следующим четырём видам:

Алгоритм решения:

Алгоритм Пример:
1) Запишем соответствующее неравенству квадратное уравнение (просто меняем знак неравенства на знак равенства « »).
2) Найдём корни этого уравнения.
3) Отметим корни на оси и схематично покажем ориентацию ветвей параболы («вверх» или «вниз»)
4) Расставим на оси знаки, соответствующие знаку квадратичной функции: там где парабола выше оси, ставим « », а там где ниже - « ».
5) Выписываем интервал(ы), соответствующий(ие) « » или « », в зависимости от знака неравенства. Если неравенство нестрогое, корни входят в интервал, если строгое - не входят.

Стать учеником YouClever,

Подготовиться к ОГЭ или ЕГЭ по математике,

А также получить доступ к учебнику YouClever без ограничений...

Квадратное неравенство – это неравенство, в котором переменная возводится в квадрат ( x 2 {\displaystyle x^{2}} ) и имеет два корня. График такого неравенства представляет собой параболу и пересекает ось Х в двух точках. Решение неравенства подразумевает нахождение таких значений x {\displaystyle x} , при которых неравенство верно. Корни неравенства можно записать в алгебраической форме, а также отобразить их на числовой прямой или координатной плоскости.

Шаги

Часть 1

Разложение неравенства на множители

    Запишите неравенство в стандартной форме. Стандартная форма квадратного неравенства представляет собой следующий трехчлен: a x 2 + b x + c < 0 {\displaystyle ax^{2}+bx+c<0} , где a {\displaystyle a} , b {\displaystyle b} , c {\displaystyle c} – коэффициенты, и a ≠ 0 {\displaystyle a\neq 0} .

    Найдите два одночлена, при перемножении которых получится первый член неравенства. Чтобы решить неравенство, нужно разложить его на два бинома (двучлена), при перемножении которых получится исходное неравенство, записанное в стандартной форме. Бином – это выражение с двумя одночленами. Помните, что биномы перемножаются по определенному правилу . Для начала найдите два одночлена, каждый из которых является первым одночленом соответствующего бинома.

    Найдите два числа, при перемножении которых получится третий член неравенства, записанного в стандартной форме. При этом сумма таких чисел должна быть равна коэффициенту при втором члене неравенства. Скорее всего, здесь числа нужно искать методом проб и ошибок, чтобы они удовлетворяли сразу двум описанным условиям. Обратите внимание на знак («плюс» или «минус»), который стоит перед третьим членом неравенства.

    Часть 2

    Нахождение корней неравенства
    1. Определите, имеют ли оба бинома одинаковые знаки. Если произведение биномов больше нуля, то оба бинома будут либо отрицательными (меньше 0), либо положительными (больше 0), потому что минус на минус дает плюс, и плюс на плюс тоже дает плюс.

      Определите, имеют ли оба бинома разные (противоположные) знаки. Если произведение биномов меньше нуля, то один бином будет отрицательным (меньше 0), а второй будет положительным (больше 0), потому что минус на плюс дает минус.

      Запишите варианты из двух неравенств, чтобы найти корни исходного неравенства. Для этого каждый бином превратите в неравенство, учитывая тот факт, что оба бинома имеют одинаковые или разные знаки.

      Решите два неравенства первого варианта. x {\displaystyle x}

      • Например, два неравенства первого варианта: x + 7 < 0 {\displaystyle x+7<0} И x − 3 > 0 {\displaystyle x-3>0}
      • Таким образом, первая пара корней исходного неравенства: x < − 7 {\displaystyle x<-7} и x > 3 {\displaystyle x>3}
    2. Проверьте действительность первой пары корней. Для этого найдите значения x {\displaystyle x}

      Решите два неравенства второго варианта. Для этого изолируйте переменную x {\displaystyle x} в каждом неравенстве. Помните, что если умножить или разделить обе стороны неравенства на отрицательное число, знак неравенства меняется на противоположный.

      • Например, два неравенства второго варианта: x + 7 > 0 {\displaystyle x+7>0} И x − 3 < 0 {\displaystyle x-3<0}
      • Таким образом, вторая пара корней исходного неравенства: x > − 7 {\displaystyle x>-7} и x < 3 {\displaystyle x<3}
    3. Проверьте действительность второй пары корней. Для этого найдите значения x {\displaystyle x} , удовлетворяющие обоим найденным корням. Если такие значения существуют, корни действительны; в противном случае корнями можно пренебречь.

    Часть 3

    Отображение корней неравенства на числовой прямой

      Нарисуйте числовую прямую. Сделайте это так, как требуется (в задаче или преподавателем). Если конкретных требований нет, под числовой прямой напишите числа, соответствующие найденным ранее корням (значениям x {\displaystyle x} ). Также можно написать несколько чисел, которые больше или меньше найденных значений; так вам будет проще работать с числовой прямой.

      На числовой прямой нарисуйте кружки, обозначающие найденные значения x {\displaystyle x} . Кружки рисуйте непосредственно над числами. Если переменная меньше ( < {\displaystyle <} ) или больше ( > {\displaystyle >} ) найденного значения, кружок не закрашивается. Если переменная меньше или равна ( ≤ {\displaystyle \leq } ) или больше или равна ( ≥ {\displaystyle \geq } ) найденному значению, кружок закрашивается, потому что множество решений включает это значение.

      На числовой прямой заштрихуйте область, определяющую множество решений. Если x {\displaystyle x} больше найденного числа, заштрихуйте область справа от него, потому что множество решений включает все значения, которые больше найденного. Если x {\displaystyle x} меньше найденного числа, заштрихуйте область слева от него, потому что множество решений включает все значения, которые меньше найденного. Если множество решений лежит между двумя числами, заштрихуйте область между этими числами.

    Часть 4

    Отображение корней неравенства на координатной плоскости

      На координатную плоскость нанесите точки пересечения с осью Х. Найденные корни являются координатами «х» точек пересечения графика с осью Х.

      Найдите ось симметрии. Ось симметрии – это прямая, которая проходит через вершину параболы и делит ее на две зеркально симметричные ветви. Чтобы найти ось симметрии, воспользуйтесь формулой x = − b 2 a {\displaystyle x={\frac {-b}{2a}}} , где a {\displaystyle a} и b {\displaystyle b} – это коэффициенты в исходном квадратном неравенстве.

Универсальным методом решения неравенств по праву считается метод интервалов. Именно его проще всего использовать для решения квадратных неравенств с одной переменной. В этом материале мы рассмотрим все аспекты применения метода интервалов для решения квадратных неравенств. Для облегчения усвоения материала мы рассмотрим большое количество примеров разной степени сложности.

Алгоритм применения метода интервалов

Рассмотрим алгоритм применения метода интервалов в адаптированном варианте, который пригоден для решения квадратных неравенств. Именно с таким вариантом метода интервалов знакомят учеников на уроках алгебры. Не будем усложнять задачу и мы.

Перейдем собственно к алгоритму.

У нас есть квадратный трехчлен a · x 2 + b · x + c из левой части квадратного неравенства. Находим нули из этого трехчлена.

В системе координат изображаем координатную прямую. Отмечаем на ней корни. Для удобства можем ввести разные способы обозначения точек для строгих и нестрогих неравенств. Давайте договоримся, что «пустыми» точками мы будем отмечать координаты при решении строгого неравенства, а обычными точками - нестрогого. Отметив точки, мы получаем на координатной оси несколько промежутков.

Если на первом шаге мы нашли нули, то определяем знаки значений трехчлена для каждого из полученных промежутков. Если нули мы не получили, то производим это действие для всей числовой прямой. Отмечаем промежутки знаками « + » или « - ».

Дополнительно мы будем вводить штриховку в тех случаях, когда будем решать неравенства со знаками > или ≥ и < или ≤ . В первом случае штриховка будет наноситься над промежутками, отмеченными « + », во втором над участками, отмеченными « - ».

Отметив знаки значений трехчлена и нанеся штриховку над отрезками, мы получаем геометрический образ некоторого числового множества, которое фактически является решением неравенства. Нам остается лишь записать ответ.

Остановимся подробнее на третьем шаге алгоритма, который предполагает определение знака промежутка. Существует несколько подходов определения знаков. Рассмотрим их по порядку, начав с наиболее точного, хотя и не самого быстрого. Этот метод предполагает вычисление значений трехчлена в нескольких точках полученных промежутков.

Пример 1

Для примера возьмем трехчлен x 2 + 4 · x − 5 .

Корни этого трехчлена 1 и - 5 разбивают координатную ось на три промежутка (− ∞ , − 5) , (− 5 , 1) и (1 , + ∞) .

Начнем с промежутка (1 , + ∞) . Для того, чтобы упростить себе задачу, примем х = 2 . Получаем 2 2 + 4 · 2 − 5 = 7 .

7 – положительное число. Это значит, что значения данного квадратного трехчлена на интервале (1 , + ∞) положительные и его можно обозначить знаком « + ».

Для определения знака промежутка (− 5 , 1) примем x = 0 . Имеем 0 2 + 4 · 0 − 5 = − 5 . Ставим над интервалом знак « - ».

Для промежутка (− ∞ , − 5) возьмем x = − 6 , получаем (− 6) 2 + 4 · (− 6) − 5 = 7 . Отмечаем этот интервал знаком « + ».

Намного быстрее определить знаки можно с учетом следующих фактов.

При положительном дискриминанте квадратный трехчлен с двумя корнями дает чередование знаков его значений на промежутках, на которые разбивается числовая ось корнями этого трехчлена. Это значит, что нам вовсе не обязательно определять знаки для каждого из интервалов. Достаточно провести вычисления для одного и проставить знаки для остальных, учитывая принцип чередования.

При желании, можно и вовсе обойтись без вычислений, сделав выводы о знаках по значению старшего коэффициента. Если a > 0 , то мы получаем последовательность знаков + , − , + , а если a < 0 – то − , + , − .

У квадратных трехчленов с одним корнем, когда дискриминант равен нулю, мы получаем два промежутка на координатной оси с одинаковыми знаками. Это значит, что мы определяем знак для одного из промежутков и для второго ставим такой же.

Здесь также применим метод определения знака на основе значения коэффициента a: если a > 0 , то будет + , + , а если a < 0 , то − , − .

Если квадратный трехчлен не имеет корней, то знаки его значений для всей координатной прямой совпадают как со знаком старшего коэффициента a , так и со знаком свободного члена c .

Например, если мы возьмем квадратный трехчлен − 4 · x 2 − 7 , он не имеет корней (его дискриминант отрицательный). Коэффициент при x 2 есть отрицательное число − 4 , и свободный член − 7 тоже отрицателен. Это значит, что на промежутке (− ∞ , + ∞) его значения отрицательны.

Рассмотрим примеры решения квадратных неравенств с использованием рассмотренного выше алгоритма.

Пример 2

Решите неравенство 8 · x 2 − 4 · x − 1 ≥ 0 .

Решение

Используем для решения неравенства метод интервалов. Для этого найдем корни квадратного трехчлена 8 · x 2 − 4 · x − 1 . В связи с тем, что коэффициент при х четный, нам будет удобнее вычислить не дискриминант, а четвертую часть дискриминанта: D " = (− 2) 2 − 8 · (− 1) = 12 .

Дискриминант больше нуля. Это позволяет нам найти два корня квадратного трехчлена: x 1 = 2 - 12 9 , x 1 = 1 - 3 4 и x 2 = 2 + 12 8 , x 2 = 1 + 3 4 . Отметим эти значения на числовой прямой. Так как уравнение нестрогое, то на графике мы используем обычные точки.

Теперь по методу интервалов определяем знаки трех полученных интервалов. Коэффициент при x 2 равен 8 , то есть, положителен, следовательно, последовательность знаков будет + , − , + .

Так как мы решаем неравенство со знаком ≥ , то изображаем штриховку над промежутками со знаками плюс:

Запишем аналитически числовое множество по полученному графическому изображению. Мы можем сделать это двумя способами:

Ответ: (- ∞ ; 1 - 3 4 ] ∪ [ 1 + 3 4 , + ∞) или x ≤ 1 - 3 4 , x ≥ 1 + 3 4 .

Пример 3

Выполните решение квадратного неравенства - 1 7 · x 2 + 2 · x - 7 < 0 методом интервалов.

Решение

Для начала найдем корни квадратного трехчлена из левой части неравенства:

D " = 1 2 - - 1 7 · - 7 = 0 x 0 = - 1 - 1 7 x 0 = 7

Это строгое неравенство, поэтому на графике используем «пустую» точку. С координатой 7 .

Теперь нам нужно определить знаки на полученных промежутках (− ∞ , 7) и (7 , + ∞) . Так как дискриминант квадратного трехчлена равен нулю, а старший коэффициент отрицательный, то мы проставляем знаки − , − :

Так как мы решаем неравенство со знаком < , то изображаем штриховку над интервалами со знаками минус:

В данном случае решениями являются оба промежутка (− ∞ , 7) , (7 , + ∞) .

Ответ: (− ∞ , 7) ∪ (7 , + ∞) или в другой записи x ≠ 7 .

Пример 4

Имеет ли квадратное неравенство x 2 + x + 7 < 0 решения?

Решение

Найдем корни квадратного трехчлена из левой части неравенства. Для этого найдем дискриминант: D = 1 2 − 4 · 1 · 7 = 1 − 28 = − 27 . Дискриминант меньше нуля, значит, действительных корней нет.

Графическое изображение будет иметь вид числовой прямой без отмеченных на ней точек.

Определим знак значений квадратного трехчлена. При D < 0 он совпадает со знаком коэффициента при x 2 , то есть, со знаком числа 1 , оно положительное, следовательно, имеем знак + :

Штриховку мы могли бы нанести в данном случае над промежутками со знаком « - ». Но таких промежутков у нас нет. Следовательно, чертеж сохраняет вот такой вид:

В результате вычислений мы получили пустое множество. Это значит, что данное квадратное неравенство решений не имеет.

Ответ: Нет.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Общий вид квадратного неравенства после переноса всех выражений на одну сторону неравенства представляет собой одну из следующих форм:

$ax^2+bx+c > 0$ , либо $ax^2+bx+c \geq 0$ либо $ax^2+bx+c

Когда $a \neq 0$ , а также $b, c \in \mathbb{R}$

Решением каждого неравенства указанного выше, является нахождение всех действительных чисел, которыми можно заменить $x$ так, чтобы неравенство было верным.

Например, если мы заявляем, что $x = 1$ является одним из корней неравенства $x^2 - \frac{1}{2} > 0$. Подставив 1 вместо всех переменных $x$ в неравенстве, мы получим, что $1^2 - \frac{1}{2} > 0 \rightarrow \frac{1}{2} > 0$ ,
что всегда верно. Поэтому $x = 1$ является одним из решений данного неравенства.

Теперь мы научимся решать неравенства (1).

Во-первых, мы рассмотрим уравнение с двумя переменными, $y = ax^2+bx+c$, и предположим, что $ax^2+bx+c$ равно нулю. Тогда:

$ax^2+bx+c = 0 \rightarrow a(x^2+\frac{b}{a}x+\frac{c}{a}) = 0 \rightarrow^{a \neq 0} x^2+\frac{b}{a}x+\frac{c}{a} = 0 \rightarrow$
$x^2+\frac{b}{a}x+\frac{c}{a}+\frac{b^2}{4a^2}-\frac{b^2}{4a^2} = 0 \rightarrow (x + \frac{b}{2a})^2 - \frac{b^2 - 4ac}{4a^2} = 0 \rightarrow$
$(x + \frac{b}{2a})^2 = \frac{b^2 - 4ac}{4a^2} \rightarrow x + \frac{b}{2a} = \pm \sqrt{\frac{b^2 - 4ac}{4a^2}} \rightarrow x + \frac{b}{2a} = \pm \frac{\sqrt{b^2 - 4ac}}{2a} \rightarrow $
$x = \frac{-b}{2a} \pm \frac{\sqrt{b^2 - 4ac}}{2a} \rightarrow x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Из этого следует, что график квадратного уравнения пересекает ось x в точке $x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$ и $x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$

Эти нули разделяют числовую прямую на три интервала:

$(-\infty, x_1)$ , $$ , $(x_2,+\infty)$,

допуская, что $x_1

Теперь пусть $\Delta = b^2 - 4ac$.

Мы можем рассмотреть три указанных ниже случая:

  1. $\Delta > 0$
  2. $\Delta = 0$
  3. $\Delta

Случай 1: Если $\Delta > 0$,

Тогда $ax^2+bx+c$ имеет два различных корня $(x_1 \neq x_2)$.
Теперь, если $a>0$, то его график получается таким, как на "Рисунке а" .
Если $a "Рисунке b". Поэтому, если $a>0$ и, если имеем $ax^2+bx+c \geq 0 (ax^2+bx+c > 0)$, то тогда множество решений это:
$(-\infty, x_1] \cup $ $((x_1,x_2))$
С другой стороны, если $a 0)$, тогда множество решений это:
$$ $((x_1,x_2))$
А если имеем $ax^2+bx+c \leq 0 (ax^2+bx+c $(-\infty, x_1] \cup \cup }